

Shaft Couplings

Backlash-free Torque Transmission Compensation of Shaft Misalignment

mayr®-your reliable partner

What is your definition of reliability?

We define reliability as the highest product quality and competent service from the initial contact right up to the after-sale service

- □ Largest variety in selection of standard products
- ☐ Market leader's competence arising from decades of experience in the development, production and application of power transmission products
- Optimum product selection due to our expertise in design and calculation
- Reliable component dimensioning
- □ Intelligent platform (modular construction)
- ☐ High flexibility for individual requests and customer-tailored solutions
- Quality-inspected suppliers
- □ Modern, highly robust materials
- □ 100% quality control
- ☐ Certified according to DIN EN ISO 9001:2000
- ☐ Personal supervision from the first contact right up to the after-sale service
- □ Worldwide local service network
- CAD-files available online to save time and costs during construction
- ⊇ 24-hour delivery service for preferred products
- □ Short delivery times and on-time delivery
- Unlimited replacement part availability worldwide

A Worldwide Presence

Our Sales and Service network is constantly expanding. We guarantee you and your customers almost all over the world local representation. With eight branch firms in France, Switzerland, Italy, England, Poland, the USA, Singapore and China as well as around 30 representatives and eight subsidiaries in Germany, we provide local service for our customers in all important industrial areas.

Total Quality Management

Product Quality

Every delivery which leaves our firm has been subjected to a careful quality inspection, meaning that you are able to rely 100 % on $mayr^{\circ}$ products. If required, we pre-adjust our clutches and brakes accurately to the requested values and confirm the product characteristics with an Inspection Report.

Quality Management

mayr® uses the term quality to describe its products and services. Certification of our quality management confirms the quality-consciousness of our colleagues at every level of the company.

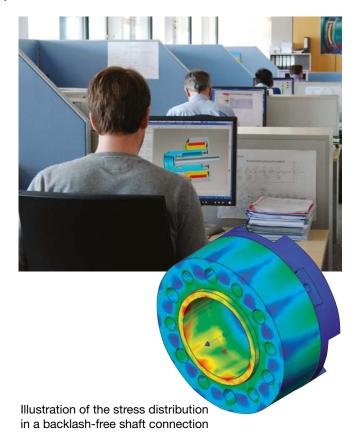
Our integrated management system is certified according to DIN EN ISO 9001:2000 (Quality) and DIN EN ISO 14001 (Environment) and complies with the OHSAS 18001/OHRIS (Occupational Health and Safety) demands.

Individual and Flexible Logistics

Flexible and optimally qualified colleagues ensure that your order is delivered according to schedule and with the most appropriate delivery method. We take into account your individual packaging and dispatch regulations as a matter of course. Our modern high rack warehouse has a permanently available stock of our wide standard product selection.

And if you are really in a hurry, simply use our uniquely-quick basic product delivery service!

Construction and Development

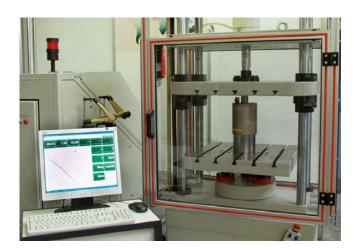

Innovations for Your Success

With our innovative and economical solutions, we are able to set new records in the field of power transmission. Our many worldwide patents prove our constant ambition of developing better and technologically superior products.

Highly qualified engineers, high-performance 3D-CADsystems and the most up-to-date FEM calculation aids used in our Development and Construction departments mean that our business is perfectly equipped to offer our customers effective solutions.

Experts for all Power Transmission Questions

Exploit our know-how, gained by decades of experience in the development, production and application of drive technology products. Our experts in Construction and Development are happy to advise you personally and competently when selecting and dimensioning the drive solution you require.



From Prototype to Finished Product

No mayr® product is released onto the market until it has proved its functional capabilities and reliability in extreme, long-term tests.

The spectrum of test stands is as varied as our range of products:

- ☐ Friction work test stands
- Wear test stands
- Noise measurement room with highly accurate noise measurement inspection devices
- ☐ Torque inspection stands up to 200.000 Nm
- ☐ Impact and alternating load test stands
- □ Force test stands
- ☐ Linear movement test stands
- □ Continuous performance test stands
- Magnetic flux measurement test stands
- ☐ High-speed test stands up to 20.000 rpm
- ☐ Misalignment and angular misalignment test stands
- □ Load and measurement test stands for DC motors

Product Data: Our 24-hour Service

Our website offers you detailed information 24 hours per day, 365 days per year with no delays. Here you can find not only the latest catalogues and technical documentation but also CAD-files for cost-saving construction of our products.

Unsurpassed Our Standard Programme

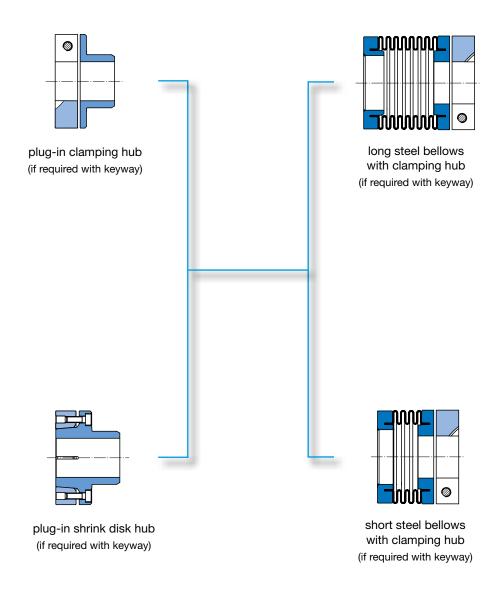
For safety clutches, safety brakes, backlash-free shaft couplings and high-quality DC drives, we offer you a complete product range with market and branch optimised constructions and designs.

The Optimum Shaft Coupling for every Drive

Each drive has its own specific characteristics and therefore places different demands on the couplings which transmit the torque from one shaft to the second and which compensate for the resulting shaft misalignments. In most cases only backlash-free couplings are able to meet the requirements for high-speed, dynamic or reversing precision drives.

mayr[®] power transmission has three of the most established and most attractive backlash-free shaft couplings in its programme:

- Disk pack couplings,
- · Steel bellows couplings and
- Elastomer couplings


Therefore, $mayr^{\circ}$ offers an optimum solution for many different drives.

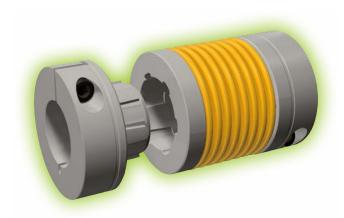
Overview: Backlash-free Shaft Couplings Types, Designs, Characteristics

primeflex®	ROBA®-DS	smartflex®	ROBA®-ES	ROBA®-DS	ROBA®-DSM	ROBA®-DS
Steel bellows couplings	Servo couplings	Steel bellows couplings	Elastomer couplings	All-steel couplings	Torque measure- ment coupling	All-steel couplings
Page 6	Page 8	Page 10	Page 12	Page 14	Page 16	Page 18
			0 5			
Flexible element						
Steel bellows	Disk pack	Steel bellows	Plastic element	Disk pack	Disk pack	Disk pack
Nominal torque ra	inge in Nm					
24 – 120	35 – 150	16 – 700	4 – 1250	190 – 24000	190 – 1600	22000 – 110000
Max. permitted sp						
8000	22500	10000	28000	13600	9500	3600
Shaft diameter in		_	_			
10 – 45	10 – 45	8 – 85	6 – 80	14 – 170	14 – 110	on request
	peration temp. in °					
120	100	120	100	250	70	250
Torsionally rigid						
X	Х	Х		X	Х	Х
Torsionally flexible	Э					
· · · · · ·			Х			
Vibration damping)					
0			Х			
	with safety clutch					· ·
X Con he interweted w	X	X	Х	Х		Х
Can be integrated v	vith torque measurem	ieni		х		X
Distance between	shaft ands			٨		^
graduated	variable	graduated	fixed	variable	fixed	variable
Single-joint design		gradatod	IIXOG	Variable	плос	variable
omigio jonit decig	X		Х	Х		Х
Shaft misalignme	nt compensation axi	al				^
	Х		Х	Х		Х
Shaft misalignme	nt compensation rac	lial				
J	1 1 1		Х			
Shaft misalignme	nt compensation and	gular				
	X		Х	Х		х
Double-joint design	gn					
Х	Х	Х		Х	Х	Х
 Shaft misalignme 	nt compensation axi	al				
Х	Х	Х		Х	Х	Х
	nt compensation rac					
Х	X	X		Х	Х	X
	nt compensation and	-				
X	X	X		Х	X	X
ATEX design acc.						
	Х		X	Х		
Product catalogue		14 000 14	14.0.40.14	14 050 14	14 050) 4	14 050 14
P.933.V	K.950.V	K.932.V	K.940.V	K.950.V	K.950.V	K.950.V

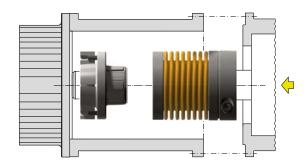
primeflex® – steel bellows couplings Modular Structure

According to German notation, decimal points in this catalogue are represented with a comma (e.g. 0,5 instead of 0.5).

We reserve the right to make dimensional and constructional alterations.

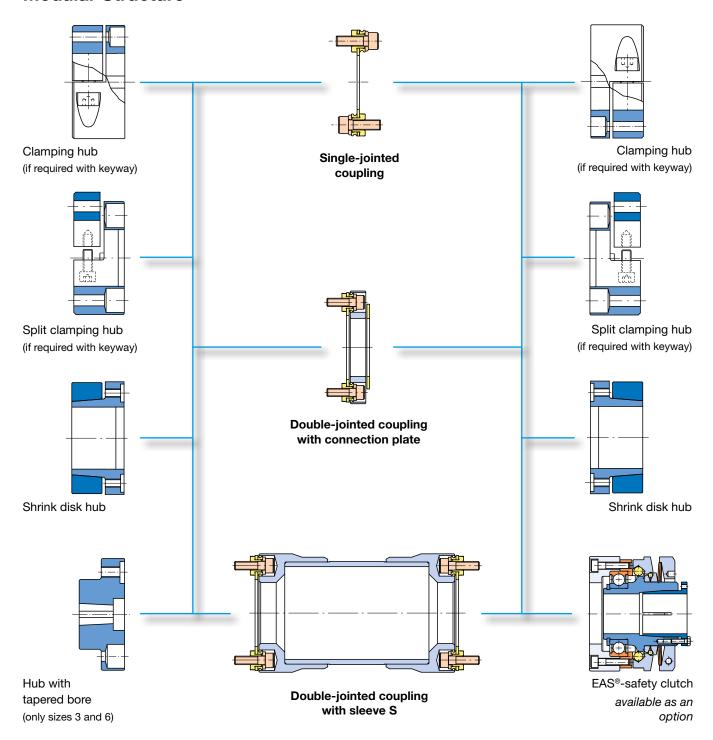

For detailed information, detailed technical data and dimensions, please see our product catalogue P.933.V $_$. $_$.

primeflex® - steel bellows couplings


Characteristics and Advantages

- Plug-in connection
- · Backlash-free
- Can be de-installed even after longer operating periods without damaging the steel bellows
- Extremely compact and very high performance density
- Easy to install via clamping or shrink disk connections
- Frictionally-locking and positive-locking shaft-hub connections
- Excellent misalignment compensation capability
- Can be variably dimensioned via the modular system
- · Cost-effective

Installation Example


The primeflex®-steel bellows coupling transmits the torque backlash-free between the motor shaft and the gear shaft. By applying plug-in shrink disk hubs (see Installation Example) or plug-in clamping hubs, the primeflex®-steel bellows couplings can be mounted in areas which are difficult to access.

Tool	hnical Data	Dimensions				Size	
iec	nnicai Data,	Dimensions			1	2	3
Nom	inal torque		T _{KN}	[Nm]	24	60	120
Oute	Outer diameter			[mm]	47	60	79
ą	Minimum bor	е		[mm]	12	19	25
J L	Maximum bo	re		[mm]	25	35	45
Clamping hub	Maximum spe	eed	n _{max}	[rpm]	8000	6000	4000
am	Length	long steel bellows		[mm]	77	93	117
ਹ		short steel bellows		[mm]	62	74	92
	Axial	long steel bellows	ΔK_{a}	[mm]	0,2	0,25	0,25
a t	displacement	short steel bellows	ΔK_{a}	[mm]	0,1	0,15	0,15
Permitted 1) misalignments	Radial	long steel bellows	ΔK_r	[mm]	0,2	0,3	0,3
rmi	misalignment	short steel bellows	ΔK_r	[mm]	0,1	0,1	0,1
Pe nis	Angular	long steel bellows	ΔK_{w}	[°]	1	1	1
_	misalignment	short steel bellows	ΔK_{w}	[°]	1	1	1
Torsi	onal	long steel bellows	C _T	[10 ³ Nm/rad]	9	22	50
sprin	g rigidity	short steel bellows	C _T	[10 ³ Nm/rad]	18	44	100

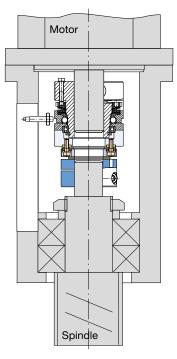
¹⁾ The permitted misalignments may not simultaneously reach their maximum value.

ROBA®-DS – servo couplings Modular Structure

Also available in ATEX design according to the directive 94/9 EC (ATEX 95).

For detailed information, detailed technical data and dimensions, please see our product catalogue K.950.V__._

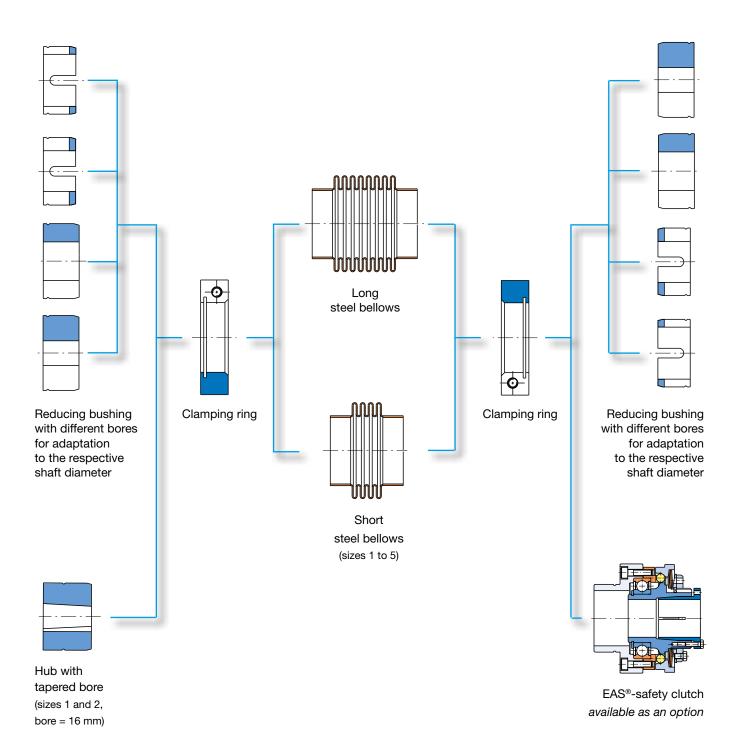
ROBA®-DS - servo couplings


Characteristics and Advantages

- ROBA®-DS servo couplings are made of steel and highstrength aluminium alloys - the basis of these extremely compact designs.
- Due to their high performance density, they transmit high torques at comparably low volumes.
- Their low mass moment of inertia also predestines ROBA®-DS servo couplings for highly dynamic drive systems with high speeds.
- The flexible disk pack compensates for shaft misalignments and transmits the torque backlash-free with a high torsional
- ROBA®-DS servo couplings are absolutely wear-free and maintenance-free.

Installation Example

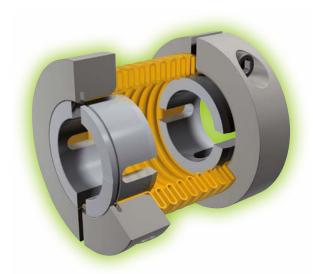
ROBA®-DS shaft coupling combined with an EAS®safety clutch. Backlash-free and torsionally rigid torque transmission between the motor shaft and the spindle shaft. Compensation of axial, radial and angular misalignments.


Too	hnical Data D	imonoiono				Si	ze	
iec	hnical Data, D	IIIIelisiolis			3	6	10	15
Nom	Nominal torque ¹⁾			[Nm]	35	60	100	150
Peak	Peak torque 2)		T _{KS}	[Nm]	52	90	150	225
Alter	nating torque		T _{KW}	[Nm]	21	36	60	90
Oute	Outer diameter			[mm]	45	56	69	79
ą	Minimum bore			[mm]	10	14	19	25
Clamping hub	Maximum bore			[mm]	20	28	35	42
più	Maximum speed	J ³⁾	n _{max}	[rpm]	13500	10800	9000	7800
am	Length single-jo	ointed coupling		[mm]	48,5	52,6	67	69,9
ਹ	Min. length dou	ble-jointed coupling		[mm]	59	64,7	79,5	82,8
l 4) ints	Axial displacemen	nt ^{5) 6)}	ΔK_{a}	[mm]	0,5	0,7	0,9	1,1
tted	Radial	with connection plate	ΔK_r	[mm]	0,15	0,15	0,2	0,2
Permitted 4) misalignments	misalignment 5)	with special sleeve	ΔK_{rH}	[mm]		Please contact t	ne manufacturer.	
P. mis	Angular misalignment per disk pack ΔΚ		ΔK_{w}	[°]	1,0	1,0	1,0	1,0
Torsi	onal spring rigidit	y disk pack	C _{T LP}	[10 ³ Nm/rad]	17	35	60	145

- 1) Valid for max. permitted shaft misalignments.
- 2) Valid for unchanging load direction, max. load cycles ≤ 10⁵.
- 3) Not valid for coupling with special sleeve.

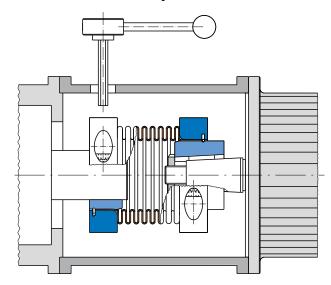
- 4) The permitted misalignments may not simultaneously reach their max. value. 5) The values refer to couplings with 2 disk packs.
- 6) Only permitted as a static or virtually static value.

smartflex® – steel bellows couplings Modular Structure



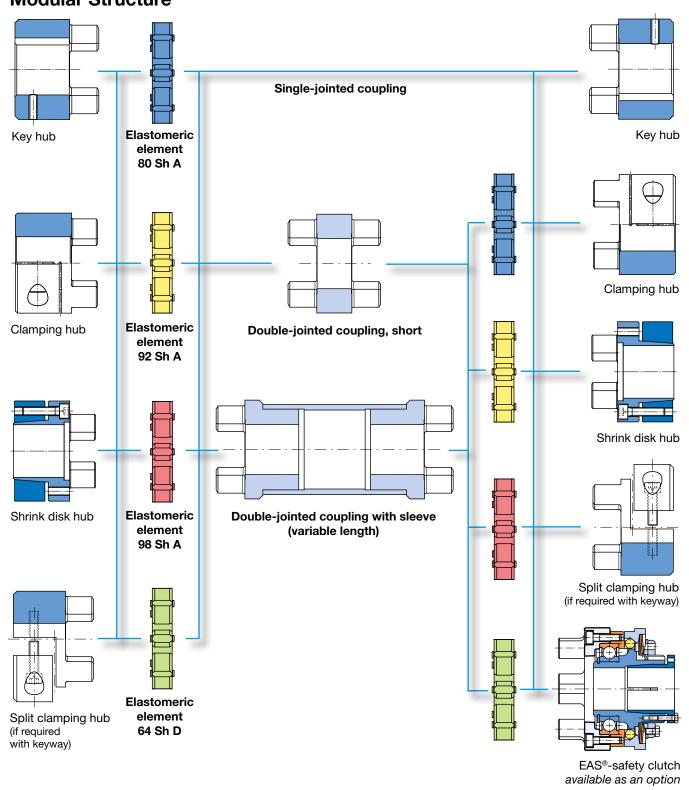
For detailed information, detailed technical data and dimensions, please see our product catalogue K.932.V__._

smartflex® - steel bellows couplings


Characteristics and Advantages

- smartflex®-steel bellows couplings compensate for axial, angular and radial shaft misalignments.
- Backlash-free shaft attachment, backlash-free torque transmission and high torsional rigidity provide high precision in the drive line.
- The easy and fast shaft attachment saves installation time.
- Due to the ingeniously simple set-up, the priceperformance ratio is extremely advantageous.
- On radial shaft misalignment, the misalignment compensation capability of smartflex®-couplings is up to three times higher than the misalignment compensation capability of common steel bellows couplings.
- The high misalignment compensation capability eliminates the most common accident cause on previous generations of steel bellows.
- A flexible modular system minimises storage and provides high availability.

Installation Example

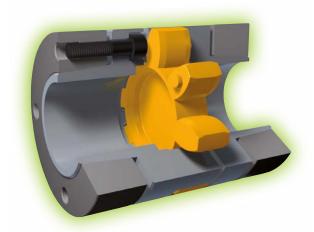

By applying clamping ring hubs, the smartflex®-steel bellows couplings can be mounted in areas which are difficult to access. Please provide an opening in the bell housing for the Allen wrench as depicted in the example.

Tool	hnical Data D	limonoiono			Size								
iec	hnical Data, D	illiensions			0	1	2	3	4	5			
Nom	inal torque		T_{KN}	[Nm]	16	40	100	200	400	700			
Oute	Outer diameter			[mm]	46	57	72	94	118	146			
	Minimum bore			[mm]	8	11	16	18	30	40			
ing or	Maximum bore			[mm]	19	25	36	50	62	85			
Reducing bushing	Maximum speed	d	n _{max}	[rpm]	10000	8000	6000	4000	3000	2500			
Pe pu	Length	long steel bellows		[mm]	49,5	59,3	72	90,3	115	124			
		short steel bellows		[mm]	-	43,7	52,5	65,6	87	98			
	Axial	long steel bellows	ΔK_{a}	[mm]	0,4	0,6	0,8	0,8	0,8	0,6			
ants	displacement	short steel bellows	ΔK_{a}	[mm]	-	0,3	0,4	0,4	0,6	0,6			
Permitted ¹⁾ nisalignments	Radial	long steel bellows	ΔK_r	[mm]	0,3	0,4	0,5	0,5	0,5	0,5			
in ig	misalignment	short steel bellows	ΔK_r	[mm]	-	0,1	0,1	0,1	0,1	0,1			
Pe	Angular	long steel bellows	ΔK_{w}	[°]	3	3	3	3	1,5	1,0			
-	misalignment	short steel bellows	ΔK_{w}	[°]	-	1,5	1,5	1,5	1,2	1,0			
Torsi	ional spring	long steel bellows	C _T	[10 ³ Nm/rad]	4	9	22	50	125	305			
rigid	rigidity short steel I		C _T	[10 ³ Nm/rad]	-	18	44	100	168	380			

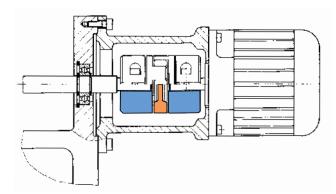
¹⁾ The permitted misalignments may not simultaneously reach their maximum value.

ROBA®-ES – elastomer couplings Modular Structure

Also available in ATEX design according to the directive 94/9 EC (ATEX 95).

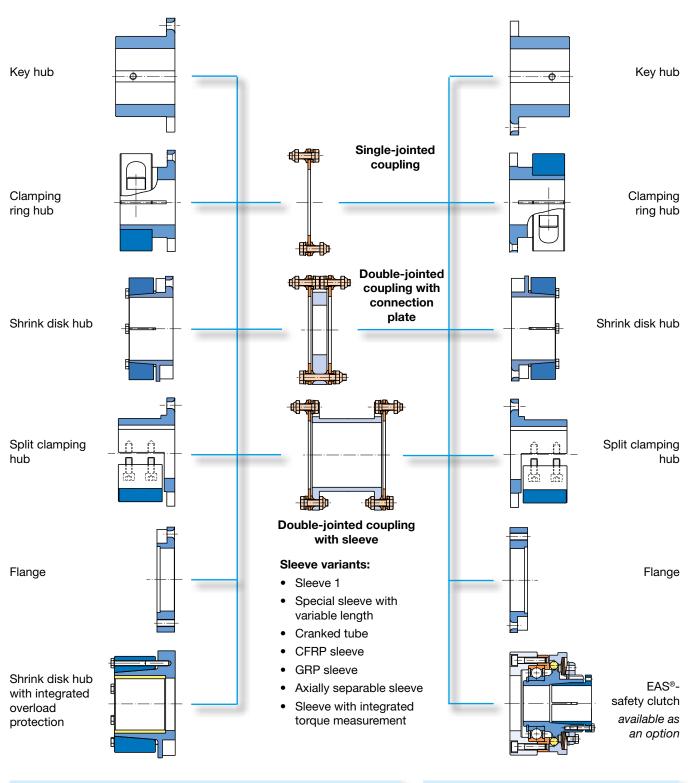

For detailed information, detailed technical data and dimensions, please see our product catalogue K.940.V__._

ROBA®-ES – elastomer couplings


Characteristics and Advantages

- ROBA®-ES couplings transmit the torque backlash-free via pre-tensioned elastomer elements and compensate for shaft misalignments.
- Rigidity and damping behaviour are variable due to four elastomeric elements per size in different Shore hardnesses.
- ROBA®-ES elastomer couplings are insertable and are, therefore, also suitable for blind assembly.
- The couplings are maintenance-free, media-resistant and temperature-resistant. This guarantees the highest operational safety.
- ROBA®-ES couplings are torsionally flexible within narrow areas. However, in comparison to the toothed belt drive, their rigidity is still 2 to 4 times higher.

Installation Example


The ROBA®-ES shaft coupling transmits the torque backlash-free between the motor shaft and the output shaft. It also compensates for axial, radial and angular shaft misalignments.

Tool	hnical Data Di	imonoiono			Size									
iec	hnical Data, Di	IIIeusions			14	19	24	28	38	42	48	55	65	
Nom	Nominal torque Elastomeric element hardness 98 Sh A			[Nm]	13	17	60	160	325	450	525	685	1040	
Peak torque Elastomeric element hardness 98 Sh A T _{KS} [N			[Nm]	26	34	120	320	650	900	1050	1370	2080		
Alternating torque Elastomeric element hardness 98 Sh A T _{KW} [Nm]					See coupling dimensioning in the current ROBA®-ES catalogue.									
Outer diameter [mm]				30	40	55	65	80	95	105	120	135		
ş	Minimum bore			[mm]	6	10	15	19	20	28	35	40	45	
nk di	Maximum bore			[mm]	14	20	28	38	45	50	60	70	75	
Shrink disk hub	Maximum speed		n _{max}	[rpm]	28000	21000	15500	13200	10500	9000	8000	6300	5600	
ß	Length			[mm]	50	66	78	90	114	126	140	160	185	
ent Sh A		axial	ΔK_{a}	[mm]	1,0	1,2	1,4	1,5	1,8	2,0	2,1	2,2	2,6	
emer 98 SI	Permitted misalignment 1)	radial	ΔK_r	[mm]	0,09	0,06	0,1	0,11	0,12	0,14	0,16	0,17	0,18	
elem ss 98	inisanginnent ·	angular	ΔK_{w}		0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	0,9	
Elast. el hardness	Torsional spring	static	C _{T stat.}	[10 ³ Nm/rad]	0,12	0,9	3,7	4,2	7,4	13,8	15,1	20,5	32,8	
har n	igidity	dynamic	C _{T dyn.}	[10 ³ Nm/rad]	0,3	2,2	7,6	10,1	19,9	31,1	44,9	48,2	67,4	

¹⁾ The permitted misalignments may not simultaneously reach their maximum value.

ROBA®-DS – backlash-free all-steel couplings Modular Structure

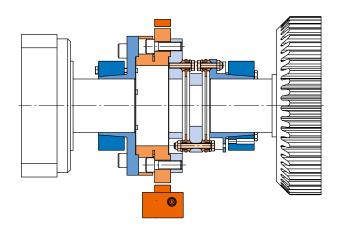
Also available in ATEX design according to the directive 94/9 EC (ATEX 95).

Also available in rustproof design.

For detailed information, detailed technical data and dimensions, please see our product catalogue K.950.V__._

ROBA®-DS - backlash-free all-steel couplings

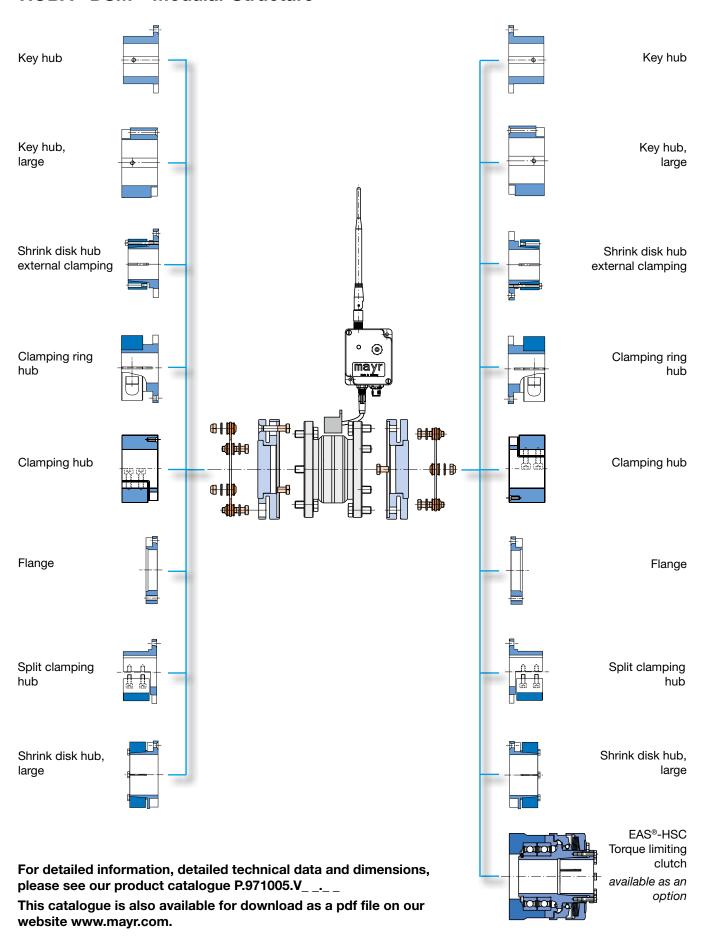
Characteristics and Advantages


- ROBA®-DS couplings are not sensitive to alternating loads up to the full nominal torque.
- Due to their high performance density, they have a low mass moment of inertia.
- ROBA®-DS disk pack couplings transmit the torque absolutely backlash-free and with a constantly high torsional rigidity up to the nominal torque.
- On ROBA®-DS couplings, the full nominal torque can be used, even on alternating torques and shaft misalignments.
- They have a high misalignment compensation capability with low restoring forces.
- ROBA®-DS couplings are extremely robust and can therefore be used even under difficult conditions.
- The high variant variety permits optimum coupling configuration.

ROBA®-DS shaft coupling combined with an EAS®-safety clutch in a gear test stand manufactured by the company EGM (Entwicklungsgesellschaft für Montagetechnik GmbH, Hannover).

Installation Example

By using special adaptor flanges, different measuring flanges (for torque measurement) can be integrated into ROBA®-DS couplings.


To	Technical Data, Dimensions			Size													
160	CI.	iilicai Data, i	Difficitions			16	25	40	64	100	160	180	300	500	850	1400	2200
Nor	Nominal torque ¹⁾ T_{KN} [N		[Nm]	190	290	450	720	1000	1600	2100	3500	5800	9500	15000	24000		
Peak torque 2) T		T _{KS}	[Nm]	285	435	675	1080	1500	2400	3150	5250	8700	14250	22500	36000		
Out	ter	r diameter			[mm]	77	89	104	123	143	167	143	167	198	234	274	314
	Minimum bore			[mm]	14	20	25	30	35	40	42	50	60	70	80	100	
¥	2	Maximum bore	е		[mm]	45	52	60	70	90	100	75	85	100	120	140	170
h i	Maximum speed ³ Min. length single-jointed coupling		n _{max}	[rpm]	13600	11800	10100	8500	7300	6200	7300	6200	5200	4400	3800	3300	
<u>∞</u> ÷				[mm]	77,1	87,2	98,4	109,6	120	131,6	141,2	161,2	202	244	276	317,8	
		Min. length do	uble-jointed coupling		[mm]	96,2	106,4	120,8	137,2	148	165,2	172,4	194,4	242	295	334	383,6
€ to	2	Axial displacem	nent ^{5) 6)}	ΔK_{a}	[mm]	1,1	1,3	1,5	1,8	2,1	2,5	1,0	1,2	1,4	1,6	1,9	2,2
	<u>D</u>		with connection plate	ΔK_r	[mm]	0,3	0,3	0,4	0,45	0,45	0,55	0,25	0,25	0,35	0,4	0,5	0,55
Permitted isalignme	5	Radial misalignment 5)	with sleeve 1	$\Delta K_{_{rH}}$	[mm]	1,0	1,2	1,5	1,8	2,1	2,2	1,2	1,25	1,35	1,7	2	2,6
Perr	20	Triisangriirierit	with special sleeve	ΔK_{rH}	[mm]				Ple	ase co	ntact t	he mar	nufactu	ırer.			
Ξ.	Angular misalignment per disk pack		ΔK_{w}	[°]	1,0	1,0	1,0	1,0	1,0	1,0	0,5	0,5	0,5	0,5	0,5	0,5	
Tors	sic	onal spring rigio	dity disk pack	C _{T LP}	[10 ³ Nm/rad]	145	280	301	748	1135	1920	3000	3480	11900	20600	30150	46800

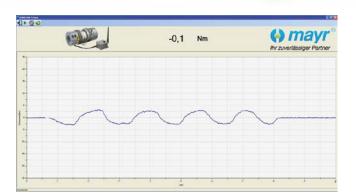
- 1) Valid for changing load direction and max. permitted shaft misalignments.
- 2) Valid for unchanging load direction, max. load cycles ≤ 10⁵.
- 3) Not valid for coupling with special sleeve.

- 4) The permitted misalignments may not simultaneously reach their max. value.
- 5) The values refer to couplings with 2 disk packs.
- 6) Only permitted as a static or virtually static value.

ROBA®-DSM - Modular Structure

ROBA®-DSM - the measuring machine element

The areas of application for this torque measurement coupling range from test stand construction through use in serial production machines right up to condition monitoring. The system permits uncomplicated condition monitoring of machines and systems.


Valuable Data for Maximum Productivity

- Machine performance data
- Unpermitted operating conditions lying outside the specifications (in case of a defect or reclaim)
- Utilisation or runtime of the machine
- Current operating conditions and condition changes to the machine for preventative maintenance purposes
- Dynamic maintenance intervals dependent on the utilisation

Highlights and System Advantages

- Direct PC connection possible (USB connection)
- Software for visualisation of the measured values available as an option
- · Use without bearings
- Simple installation and set-up
- Low space requirements on the drive line, no torque support required
- Resistant to vibrations and distance changes on the energy transmitter
- Housing and plug-in connector suitable for industrial purposes (protected against water spray)
- High measuring rate of 7000 measurements per second permits the recording of highly-dynamic loads
- Operation of strain sensor without battery via contactless power supply

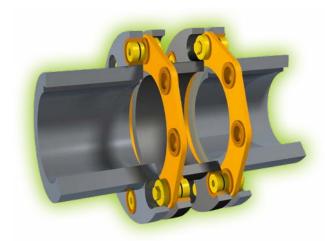
Tachnical Data	Dimensiana			Size							
Technical Data,	Dimensions			16	40	100	160				
Nominal torque 1) 2)		T _{KN}	[Nm]	190	450	800	1600				
Peak torque 3)		T _{KS}	[Nm]	285	675	1200	2400				
Ultimate torque		T _{KB}	[Nm]	570	1350	2400	4800				
	Minimum bore	d _{K min}	[mm]	20	25	32	40				
Clamping hub	Maximum bore	$d_{_{Kmax}}$	[mm]	45	60	90	100				
Clamping nub	Maximum speed	n _{max}	[rpm]	9500	7000	5100	4300				
	Length torque measurement coupling		[mm]	178,2	230,8	292	329,2				
Bin. d	Permitted axial displacement 5) 6)	ΔK_{a}	[mm]	0,8	1,1	1,5	1,7				
Permitted misalignments 4)	Permitted angular misalignment 7)	ΔK_{w}	[mm]	0,7	0,7	0,7	0,7				
misalignments *	Permitted radial misalignment 5)	ΔK_r	[mm]	1,1	1,3	1,6	1,8				
Carina rigidition	Total torsional rigidity		[10 ³ Nm/rad]	36,2	114,3	320	585				
Spring rigidities	Angular spring rigidity 7)		[Nm/rad]	229	298	1089	1990				

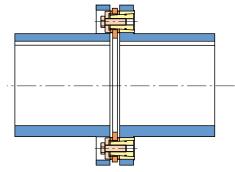
Technical Data for Measuring System									
Supply voltage	24 VDC (±10 %)								
Max. current consumption	1 A								
Measuring signal output (rotational direction right positive, 10V refers to $T_{\rm KN}$)	0 ±10 V								
Nominal temperature range	-20 °C to +70 °C								
Temperature drift, zero point	0,04 % of final value/K								
Temperature drift, measured value	0,03 % of final value/K								

- 1) Other torques and construction sizes available on request.
- 2) Valid for changing load direction as well as for max. permitted shaft misalignment.

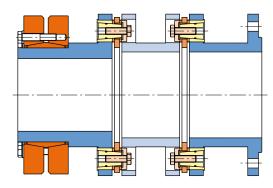
The following applies for split clamping hubs: Valid for unchanging load direction as well as for max. permitted shaft misalignment. When the load direction changes, max. 60% of the stated nominal torque is permitted.

Technical Data for Measuring System									
Max. total error	< 1 % of final value (< 0,5 % via USB)								
Bandwidth	3 kHz (-3 dB)								
Max. dyn. load	100 % of T _{KN}								
Protection	Receiver/stator IP65 Strain sensor IP52								
Permitted speed	0 n _{max}								
Connection	M12 plug, 4-pole								


- 3) Valid for unchanging load direction, max. load cycles ≤ 10⁵.
- The permitted misalignments may not simultaneously reach their maximum values.
- 5) The values refer to couplings with 2 disk packs.
- 6) Only permitted as a static or virtually static value.
- 7) The values refer to 1 disk pack.


ROBA®-DS - backlash-free couplings for high torques

Characteristics and Advantages


- Low screw tightening torques
- Can be installed / de-installed radially
- Easy and quick installation / de-installation
- No hydraulic installation tools required; can be installed with a torque wrench
- Backlash-free torque transmission
- FEM-optimized disk shape
- High torsional rigidity
- High performance density
- Compensation of axial, angular and radial misalignments
- · Wear and maintenance-free
- High flexibility through customer-specific hubs and sleeves

Design Examples

Single-jointed coupling with key hubs

Double-jointed coupling with shrink disk hub and flange

The design of the hubs and sleeves is carried out according to the customers requirements.

Toohnical Da	ta Dimensione			Size							
rechnical Da	ta, Dimensions			2200	3300	5000	7300	11000			
Alternating torque 1) T _{KW}		T _{KW}	[Nm]	14700	22 000	33300	48700	73300			
Nominal torque ²⁾		[Nm]	22000	33 000	50000	73000	110000				
Peak torque ³⁾			[Nm]	44000	66 000	100000	146000	220 000			
Outer diameter [mm]			[mm]	290	332	378	431	492			
Maximum speed	d	n _{max}	[rpm]	3600	3100	2700	2400	2100			
	perm. axial displacement 5)	ΔK_{a}	[mm]	1,6	1,7	2,1	2,3	2,3			
Permitted 4) misalignments	perm. radial misalignment with special sleeve	ΔK_{rH}	[mm]	Please contact the manufacturer.							
misangriments	perm. angular misalignment per disk pack	$\Delta K_{_{\!\scriptscriptstyle W}}$	[°]	0,4	0,4	0,4	0,4	0,3			

¹⁾ Valid for changing load direction as well as for max. permitted shaft misalignment.

For detailed information, detailed technical data and dimensions, please see our product catalogue K.950.V__._

²⁾ Valid for unchanging load direction as well as for max. permitted shaft misalignment.

³⁾ Valid for unchanging load direction, max. load cycles ≤ 10⁵.

⁴⁾ The permitted misalignments may not simultaneously reach their maximum values.

⁵⁾ The values refer to couplings with 2 disk packs.

System solution for wind power plants

ROBA®-DS Wind power module

The *mayr*[®] company's decades of experience in shaft couplings and overload systems for all areas of mechanical engineering forms a strong basis for our wind power module. The wind power module has the following characteristics:

Safe overload protection

An integrated ROBA®-slip bushing produced from a specially-developed bushing material ensures reliable overload protection against short-circuit torques due to its minimal torque tolerance.

Electrical insulation

The electrical insulation through the sleeve made of glass fibre-reinforced plastic prevents damage to bearings and toothing.

Compensation of shaft misalignments

Specially-developed rustproof steel disks allow compensation of extremely high axial, radial and angular shaft misalignments. This means that only low restoring forces are generated.

Integrated brake disk

A brake disk can be integrated into the wind power module according to customer-specific requirements.

Ease of installation

The disk packs and the intermediate sleeve can be mounted and de-installed radially without axial displacement of the hub being required.

It is possible to install the disk packs with low tightening torques by using special clamping nuts.

Chr. Mayr GmbH + Co. KG Eichenstrasse 1, D-87665 Mauerstetten Tel.: +49 83 41/8 04-0, Fax: +49 83 41/80 44 21 www.mayr.com, E-Mail: info@mayr.com

Service Germany

Baden-Württemberg

Esslinger Straße 7 70771 Leinfelden-Echterdingen Tel.: 07 11/45 96 01 0

Fax: 07 11/45 96 01 10

Hagen

Im Langenstück 6 58093 Hagen Tel.: 0 23 31/78 03 0

Fax: 0 23 31/78 03 25

Bavaria

Eichenstrasse 1 87665 Mauerstetten Tel.: 0 83 41/80 41 04 Fax: 0 83 41/80 44 23

Kamen

Lünener Strasse 211 59174 Kamen Tel.: 0 23 07/23 63 85

Fax: 0 23 07/24 26 74

Chemnitz

Bornaer Straße 205 09114 Chemnitz Tel.: 03 71/4 74 18 96 Fax: 03 71/4 74 18 95

North Schiefer Brink 8

32699 Extertal Tel.: 0 57 54/9 20 77 Fax: 0 57 54/9 20 78 Rhine-Main

Franken

Unterer Markt 9

91217 Hersbruck

Tel.: 0 91 51/81 48 64

Fax: 0 91 51/81 62 45

Hans-Böckler-Straße 6 64823 Groß-Umstadt Tel.: 0 60 78/7 82 53 37 Fax: 0 60 78/9 30 08 00

Branch office

Mayr Zhangjiagang Power Transmission Co., Ltd. Changxing Road No. 16, 215600 Zhangjiagang Tel.: 05 12/58 91-75 65 Fax: 05 12/58 91-75 66 info@mayr-ptc.cn

Singapore

Mayr Transmission (S) PTE Ltd. No. 8 Boon Lay Way Unit 03-06, TradeHub 21 Singapore 609964 Tel.: 00 65/65 60 12 30

Fax: 00 65/65 60 10 00

info@mayr.com.sg

Great Britain

Mayr Transmissions Ltd. Valley Road, Business Park Keighley, BD21 4LZ West Yorkshire Tel.: 0 15 35/66 39 00

Fax: 0 15 35/66 32 61 sales@mayr.co.uk

Switzerland

Mayr Kupplungen AG Tobeläckerstrasse 11 8212 Neuhausen am Rheinfall

Tel.: 0 52/6 74 08 70 Fax: 0 52/6 74 08 75 info@mayr.ch

France

Mayr France S.A.S. Z.A.L. du Minopole Rue Nungesser et Coli 62160 Bully-Les-Mines Tel.: 03.21.72.91.91 Fax: 03.21.29.71.77 contact@mayr.fr

USA

Mayr Corporation 4 North Street Waldwick NJ 07463

Tel.: 2 01/4 45-72 10 Fax: 2 01/4 45-80 19 info@mayrcorp.com

Italy

Mayr Italia S.r.I. Viale Veneto, 3 35020 Saonara (PD) Tel.: 0498/79 10 20 Fax: 0498/79 10 22 info@mayr-italia.it

Representatives

Regal Beloit Australia Pty Ltd. 19 Corporate Ave 03178 Rowville, Victoria Australien

Tel.: 0 3/92 37 40 00 Fax: 0 3/92 37 40 80 salesAUvic@regalbeloit.com

Poland

Wamex Sp. z o.o. ul. Pozaryskiego, 28 04-703 Warszawa Tel.: 0 22/6 15 90 80 Fax: 0.22/8 15.61.80 wamex@wamex.com.pl

National Engineering Company (NENCO) J-225, M.I.D.C. Bhosari Pune 411026 Tel.: 0 20/27 13 00 29 Fax: 0.20/27 13 02 29 nenco@nenco.org

South Korea

Mayr Korea Co. Ltd. Room No.1002, 10th floor, Nex Zone, SK TECHNOPARK, 77-1, SungSan-Dong, SungSan-Gu, Changwon, Korea

Tel.: 0 55/2 62-40 24 Fax: 0 55/2 62-40 25 info@mayrkorea.com

MATSUI Corporation 2-4-7 Azabudai Minato-ku Tokyo 106-8641 Tel.: 03/35 86-41 41 Fax: 03/32 24 24 10 k.goto@matsui-corp.co.jp

Taiwan

German Tech Auto Co., Ltd. No. 28, Fenggong Zhong Road, Shengang Dist., Taichung City 429, Taiwan R.O.C.

Tel.: 04/25 15 05 66 Fax: 04/25 15 24 13 abby@zfgta.com.tw

Netherlands

Groneman BV Amarilstraat 11 7554 TV Hengelo OV Tel.: 074/2 55 11 40 Fax: 074/2 55 11 09

aandrijftechniek@groneman.nl

Czech Republic

BMC - TECH s.r.o. Hviezdoslavova 29 b 62700 Brno

Tel.: 05/45 22 60 47 Fax: 05/45 22 60 48 info@bmc-tech.cz

More representatives:

Austria, Belgium, Brazil, Canada, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia, Israel, Luxembourg, Malaysia, New Zealand, Norway, Philippines, Romania, Russia, Slovakia, Slovenia, South Africa, Spain, Sweden, Thailand, Turkey

You can find the complete address for the representative responsible for your area under www.mayr.com in the internet.