Please read these Operational Instructions carefully and follow them accordingly! Ignoring these Instructions may lead to malfunctions or to clutch failure, resulting in damage to other parts.

#### Contents

| Page | 1:  | - Contents                                                                                                                                                                                               |
|------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Page | 2:  | - Safety Regulations<br>- Safety and Guideline Signs                                                                                                                                                     |
| Page | 3:  | - Clutch Illustrations (Variants)                                                                                                                                                                        |
| Page | 4:  | - Parts List                                                                                                                                                                                             |
| Page | 5:  | - Technical Data, General                                                                                                                                                                                |
| Page | 6:  | <ul> <li>Screw Tightening Torques</li> <li>Technical Data Type 4930</li> </ul>                                                                                                                           |
| Page | 7:  | - Technical Data Type 494                                                                                                                                                                                |
| Page | 8:  | - Technical Data Type 4960                                                                                                                                                                               |
| Page | 9:  | <ul> <li>Design</li> <li>Scope of Delivery / State of Delivery</li> <li>Function</li> </ul>                                                                                                              |
| Page | 10: | - Output Elements Installation                                                                                                                                                                           |
| Page | 11: | <ul> <li>Cup Spring Layering</li> <li>Mounting onto the Shaft</li> <li>De-installation of the Cone Bushings and Shrink Disks</li> </ul>                                                                  |
| Page | 12: | <ul> <li>Shaft Installation via Key Connection</li> <li>Joining Both Clutch Hubs Type 4930</li> <li>Joining Both Clutch Components Type 494</li> <li>Joining Both Clutch Components Type 4960</li> </ul> |
| Page | 13: | <ul> <li>Permitted Shaft Misalignments</li> <li>Clutch Alignment</li> </ul>                                                                                                                              |
| Page | 14: | - Torque Adjustment                                                                                                                                                                                      |
| Page | 15: | - Torque Adjustment for Standard Adjusting Nut                                                                                                                                                           |
| Page | 16: | - Torque Adjustment for Adjusting Nut with Radial Clamping                                                                                                                                               |
| Page | 17: | <ul> <li>Limit Switch Installation</li> <li>Maintenance and Maintenance Intervals</li> <li>Disposal</li> </ul>                                                                                           |
| Page | 18: | <ul> <li>Malfunctions / Breakdowns Type 490</li> <li>Malfunctions / Breakdowns Type 4930</li> </ul>                                                                                                      |
| Page | 19: | - Malfunctions / Breakdowns Type 494                                                                                                                                                                     |
| Page | 20: | - Malfunctions / Breakdowns Type 494                                                                                                                                                                     |
| Page | 21: | - Malfunctions / Breakdowns Type 4960                                                                                                                                                                    |



(B.4.14.EN)

#### **Safety Regulations**

These Installation and Operational Instructions (I + O) are part of the clutch delivery. Please keep them handy and near to the clutch at all times.



It is forbidden to start use of the product until you have ensured that all applicable EU directives, directives for the machine or system into which the product has been installed have been fulfilled. At the time these Installation and Operational Instructions go to print, the EAS<sup>®</sup>-clutches accord with the known technical

specifications and are operationally safe at the time of delivery.

Without a conformity evaluation, this product is not suitable for use in areas where there is a high danger of explosion. This statement is based on the ATEX directive.



#### □ If the EAS<sup>®</sup>-clutches are modified.

□ If the relevant standards for safety and / or installation conditions are ignored.

#### **User-implemented Protective Measures**

- Cover all moving parts to protect against seizure, dust or foreign body impact.
- □ The clutches may not be put into operation without a limit switch unless *mayr*<sup>®</sup> has been contacted and has agreed otherwise.

To prevent injury or damage, only professionals and specialists should work on the devices, following the relevant standards and directives. Please read the Installation and Operational Instructions carefully prior to installation and initial operation of the device.

These Safety Regulations are user hints only and may not be complete!

#### Safety and Guideline Signs

# 



Danger of injury to personnel and damage to machines.



#### Please Observe! Guidelines on important points.



According to German notation, decimal points in this document are represented with a comma (e.g. 0,5 instead of 0.5).





Fig. 1

![](_page_2_Picture_5.jpeg)

#### Parts List

Parts List (Only use *mayr*<sup>®</sup> original parts)

| Parts  | for Type 490:                           |   | Additi | onal parts for Type 494: |
|--------|-----------------------------------------|---|--------|--------------------------|
| Item   | Name                                    |   | Item   | Name                     |
| 1      | Hub                                     |   | 20     | Cap screw <sup>1)</sup>  |
| 2      | Pressure flange                         |   | 21     | Connection flange        |
| 3      | Thrust washer                           |   | 22     | Elastomeric element 3)   |
| 4      | Locking ring                            |   | 23.1   | Shrink disk hub          |
| 5      | Adjusting nut                           |   | 23.2   | Clamping hub             |
| 5.1    | Adjusting nut (page 16 / Figs. 12/13)   |   | 23.3   | Key hub                  |
| 6      | Deep groove ball bearing                |   | 24     | Cap screw                |
| 7      | Locking ring                            |   | 25     | Cap screw                |
| 8      | Steel ball                              |   | 26     | Set screw                |
| 9      | Cup spring                              |   |        |                          |
| 10     | Hexagon head screw 1)                   |   | Additi | onal parts for Type 496: |
| 10.1   | Cap screw (page 16 / Figs. 12/13)       |   | ltem   | Name                     |
| 11     | Hexagon head screw                      |   | 27     | Intermediate flange      |
| 12     | Limit switch <sup>2)</sup>              |   | 28     | Connection flange        |
| 13     | Cone bushing                            |   | 29     | Cap screw <sup>1)</sup>  |
| 14     | Type tag                                |   | 30     | Cap screw <sup>1)</sup>  |
|        |                                         |   | 31     | Hexagon head screw       |
| Additi | onal parts for Type 493:                |   | 32     | Hexagon head screw       |
| Item   | Name                                    |   | 33     | Washer                   |
| 15     | Cap screw <sup>1)</sup>                 |   | 34     | Hexagon nut              |
| 16.1   | Steel bellows with hub for cone bushing |   | 35     | Disk pack                |
| 16.2   | Steel bellows with hub for key          |   | 36     | Shrink disk hub          |
| 16.3   | Steel bellows with clamping hub         |   | 36.1   | Shrink disk              |
| 17     | Cone bushing                            |   | 36.2   | Hexagon head screw       |
| 18     | Hexagon head screws                     | ] | 37     | Key hub                  |
| 19     | Cap screw                               | 1 | 37.1   | Set screw                |
|        | ·                                       | - | 38     | Clamping hub             |
|        |                                         |   | 38.1   | Cap screw                |

![](_page_3_Picture_5.jpeg)

<sup>1)</sup> Secure the screws Items 10, 15, 20, 29 and 30 with Loctite 243

<sup>2)</sup> The limit switch Item 12 is not part of the standard scope of delivery

<sup>3)</sup> Elastomeric element colours (hardness): red (98 Sh A), yellow (92 Sh A), green (64 Sh D)

39

Connection plate

![](_page_3_Picture_11.jpeg)

(B.4.14.EN)

## **General Technical Data**

Table 1

| Size | Type 490.5<br>[Nm] | Type 490.8_5 <sup>1)</sup><br>[Nm] | Max. speed<br>[rpm] |           |      |
|------|--------------------|------------------------------------|---------------------|-----------|------|
| 01   | 5 – 12,5           | 10 – 25                            | 20 – 50             | 25 – 62,5 | 4000 |
| 0    | 10 – 25            | 20 – 50                            | 40 – 100            | 50 – 125  | 3000 |
| 1    | 20 – 50            | 40 – 100                           | 80 – 200            | 100 – 250 | 2500 |
| 2    | 40 – 100           | 80 – 200                           | 160 - 400           | 200 - 500 | 2000 |
| 3    | 70 – 175           | 140 – 350                          | 280 – 700           | 350 – 875 | 1200 |

<sup>1)</sup> Only available in synchronous design, max. speed = 250 rpm.

#### Table 2

|      | Thrust washer                                  | Bore from – to                                |                                     |  |  |  |  |  |  |  |
|------|------------------------------------------------|-----------------------------------------------|-------------------------------------|--|--|--|--|--|--|--|
| Size | (Fig. 1; Item 3)<br>stroke on overload<br>[mm] | Hub (1) with cone bushing (13)<br>Ø d<br>[mm] | Hub (1) with keyway<br>Ø d₀<br>[mm] |  |  |  |  |  |  |  |
| 01   | 1,2                                            | 10 – 20                                       | 12 – 20                             |  |  |  |  |  |  |  |
| 0    | 1,5                                            | 15 – 25                                       | 15 – 25                             |  |  |  |  |  |  |  |
| 1    | 1,8                                            | 22 – 35                                       | 22 – 30                             |  |  |  |  |  |  |  |
| 2    | 2,0                                            | 32 – 45                                       | 28 – 40                             |  |  |  |  |  |  |  |
| 3    | 2,2                                            | 35 – 55                                       | 32 – 50                             |  |  |  |  |  |  |  |

### Table 3

|      | Type 49                                     | 95                                                                                                         | Type 49                                     | 6                                                                                                          | Type 49                                     | )7                                                                                                         | Туре 498_5                                  |                                                                                                            |  |  |
|------|---------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------|--|--|
| Size | Maximum<br>torque<br>M <sub>G</sub><br>[Nm] | Inspection<br>dimension<br>"a" <sup>2)</sup><br>(Figs. 11/12)<br>at approx.<br>70 % M <sub>G</sub><br>[mm] | Maximum<br>torque<br>M <sub>G</sub><br>[Nm] | Inspection<br>dimension<br>"a" <sup>2)</sup><br>(Figs. 11/12)<br>at approx.<br>70 % M <sub>G</sub><br>[mm] | Maximum<br>torque<br>M <sub>G</sub><br>[Nm] | Inspection<br>dimension<br>"a" <sup>2)</sup><br>(Figs. 11/12)<br>at approx.<br>70 % M <sub>G</sub><br>[mm] | Maximum<br>torque<br>M <sub>G</sub><br>[Nm] | Inspection<br>dimension<br>"a" <sup>2)</sup><br>(Figs. 11/12)<br>at approx.<br>70 % M <sub>G</sub><br>[mm] |  |  |
| 01   | 12,5                                        | 5,7 (10,7)                                                                                                 | 25                                          | 6,5 (11,5)                                                                                                 | 50                                          | 8,1 (13,1)                                                                                                 | 62,5                                        | 8,9 (13,9)                                                                                                 |  |  |
| 0    | 25                                          | 5,9 (10,9)                                                                                                 | 50                                          | 6,9 (11,9)                                                                                                 | 100                                         | 8,9 (13,9)                                                                                                 | 125                                         | 9,9 (14,9)                                                                                                 |  |  |
| 1    | 50                                          | 5,8 (12,8)                                                                                                 | 100                                         | 7,0 (14,0)                                                                                                 | 200                                         | 9,4 (16,4)                                                                                                 | 250                                         | 10,6 (17,6)                                                                                                |  |  |
| 2    | 100                                         | 7,9 (12,9)                                                                                                 | 200                                         | 9,3 (14,3)                                                                                                 | 400                                         | 12,1 (17,1)                                                                                                | 500                                         | 13,5 (18,5)                                                                                                |  |  |
| 3    | 175                                         | 7,0 (15,0)                                                                                                 | 350                                         | 8,8 (16,8)                                                                                                 | 700                                         | 12,5 (20,5)                                                                                                | 875                                         | 14,3 (22,3)                                                                                                |  |  |

<sup>2)</sup> The values in brackets are valid for adjusting nuts with radial clamping (optional / page 16).

### Table 4

|      | Axial forces | Radial fo        | orces [N]        | Transverse force torques <sup>3)</sup> | Permitted           |  |  |
|------|--------------|------------------|------------------|----------------------------------------|---------------------|--|--|
| Size | [N]          | 1-bearing design | 2-bearing design | [Nm]                                   | ambient temperature |  |  |
| 01   | 650          | 650              | 1000             | 5                                      | -20 °C to +80 °C    |  |  |
| 0    | 1000         | 1000             | 1500             | 10                                     | -20 °C to +80 °C    |  |  |
| 1    | 1500         | 1500             | 2250             | 20                                     | -20 °C to +80 °C    |  |  |
| 2    | 2400         | 2400             | 3600             | 30                                     | -20 °C to +80 °C    |  |  |
| 3    | 4200         | 4200             | 6300             | 40                                     | -20 °C to +80 °C    |  |  |

<sup>3)</sup> Torques, which put strain on the deep groove ball bearing due to the non-centric axial forces having an effect on the pressure flange.

20/07/2015 TK/NU/GC/GF/SU

![](_page_4_Picture_16.jpeg)

## Table 5

|      | Screw tightening torques 4 [Nm] |            |            |            |            |            |            |            |            |            |            |              |              |  |
|------|---------------------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|--------------|--------------|--|
| Size | ltem<br>11                      | ltem<br>15 | ltem<br>18 | ltem<br>19 | ltem<br>20 | ltem<br>24 | ltem<br>25 | ltem<br>29 | ltem<br>30 | ltem<br>31 | ltem<br>32 | ltem<br>36.2 | ltem<br>38.1 |  |
| 01   | 4                               | 4,5        | 3          | 10         | 2,9        | 6          | 10         | -          | 4,5        | 8,5        | 8,5        | 6            | 33           |  |
| 0    | 4                               | 9,5        | 5          | 18         | 5,8        | 6          | 25         | 17,4       | 9,5        | 8,5        | 8,5        | 6            | 33           |  |
| 1    | 4                               | 16         | 9,5        | 18         | 10,1       | 10         | 25         | -          | 16         | 8,5        | 8,5        | 6            | -            |  |
| 2    | 8                               | 16         | 17         | 43         | 16         | 25         | 70         | 42         | 16         | 14         | 14         | 8,5          | -            |  |
| 3    | 12                              | 40         | 17         | 87         | 40         | 30         | 120        | 83         | 40         | 35         | 35         | 10           | -            |  |

<sup>4)</sup> Secure Items 15, 20, 29 and 30 using Loctite 243.

## Technical Data Type 493.\_\_\_.0

## Table 6

|      |                                                 |                                         |                                                         |                                                                              | Bores steel bellows side |                      |                      |  |  |  |
|------|-------------------------------------------------|-----------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------|--------------------------|----------------------|----------------------|--|--|--|
| Size | Shaft misalign<br>Axial ΔK <sub>a</sub><br>[mm] | ment steel bello<br>Radial ΔK ,<br>[mm] | ows coupling Type 493<br>Angular ΔK <sub>w</sub><br>[°] | Nominal torque T <sub>KN</sub><br>steel bellows coupling<br>Type 493<br>[Nm] | Type<br>4931<br>[mm]     | Type<br>4932<br>[mm] | Type<br>4933<br>[mm] |  |  |  |
| 01   | 0,4                                             | 0,15                                    | 2                                                       | 50                                                                           | 9 – 20                   | 9 – 20               | 12 – 25              |  |  |  |
| 0    | 0,6                                             | 0,15                                    | 2                                                       | 100                                                                          | 12 – 25                  | 12 – 25              | 15 – 32              |  |  |  |
| 1    | 0,8                                             | 0,20                                    | 2                                                       | 200                                                                          | 15 – 35                  | 15 – 35              | 25 – 42              |  |  |  |
| 2    | 1,0                                             | 0,25                                    | 2                                                       | 350                                                                          | 22– 42                   | 22 – 42              | 30 – 45              |  |  |  |
| 3    | 1,0                                             | 0,30                                    | 2                                                       | 600                                                                          | 32 – 50                  | 32 – 50              | 35 – 55              |  |  |  |

### Table 7

|      | Transmittable torques [Nm] on clamping hubs frictional locking (Type 49330)<br>- dependent on bore - suitable for tolerance constellation H7/h6 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Size | Ø 12                                                                                                                                            | Ø 13 | Ø 14 | Ø 15 | Ø 16 | Ø 17 | Ø 18 | Ø 19 | Ø 20 | Ø 21 | Ø 22 | Ø 23 | Ø 24 | Ø 25 | Ø 26 | Ø 27 | Ø 28 | Ø 29 | Ø 30 | Ø 31 | Ø 32 | Ø 33 |
| 01   | 21                                                                                                                                              | 23   | 24   | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25   | 25   | -    | -    | -    | -    | -    | -    | -    | -    |
| 0    | -                                                                                                                                               | -    | -    | 38   | 40   | 43   | 45   | 47   | 49   | 50   | 50   | 50   | 50   | 50   | 50   | 50   | 50   | 50   | 50   | 50   | 50   | -    |
| 1    | -                                                                                                                                               | I    | 1    | 1    | -    | 1    | -    | -    | 1    | -    | -    | 1    | -    | 63   | 65   | 67   | 69   | 71   | 73   | 75   | 77   | 79   |
| 2    | -                                                                                                                                               | I    | 1    | I    | -    | I    | -    | -    | I    | -    | -    | I    | -    | -    | -    | I    | I    | I    | 133  | 136  | 140  | 144  |
| 3    | -                                                                                                                                               | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| Size | Ø 34                                                                                                                                            | Ø 35 | Ø 36 | Ø 37 | Ø 38 | Ø 39 | Ø 40 | Ø 41 | Ø 42 | Ø 43 | Ø 44 | Ø 45 | Ø 46 | Ø 47 | Ø 48 | Ø 49 | Ø 50 | Ø 51 | Ø 52 | Ø 53 | Ø 54 | Ø 55 |
| 01   | -                                                                                                                                               | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| 0    | -                                                                                                                                               | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| 1    | 82                                                                                                                                              | 83   | 85   | 87   | 89   | 91   | 93   | 95   | 97   | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| 2    | 147                                                                                                                                             | 151  | 155  | 158  | 162  | 166  | 169  | 173  | 176  | 180  | 183  | 187  | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| 3    | -                                                                                                                                               | 250  | 256  | 262  | 268  | 274  | 280  | 286  | 292  | 298  | 304  | 309  | 315  | 321  | 327  | 332  | 338  | 344  | 349  | 350  | 350  | 350  |

![](_page_5_Picture_10.jpeg)

(B.4.14.EN)

Technical Data Type 494.\_\_.

Table 8

|      | B                 | ore lastic-side from - | - to              | Nominal and maximum torques flexible backlash-free shaft coupling $T_{KN}$ and $T_{Kmax.}$ |                                  |                                    |                                |                                                        |                             |  |  |  |
|------|-------------------|------------------------|-------------------|--------------------------------------------------------------------------------------------|----------------------------------|------------------------------------|--------------------------------|--------------------------------------------------------|-----------------------------|--|--|--|
|      | Clamping hub      | Shrink disk hub        | Key hub           | Type 49<br>(yel<br>elasto<br>element                                                       | 43<br>llow<br>omeric<br>92 Sh A) | Type 49<br>(r<br>elasto<br>element | 44<br>ed<br>omeric<br>98 Sh A) | Type 4946<br>(green<br>elastomeric<br>element 64 Sh D) |                             |  |  |  |
| Size | Type 4940<br>[mm] | Type 4941<br>[mm]      | Type 4942<br>[mm] | Т <sub>кN</sub><br>[Nm]                                                                    | Т <sub>к max.</sub><br>[Nm]      | Т <sub>кN</sub><br>[Nm]            | Т <sub>к max.</sub><br>[Nm]    | Т <sub>кN</sub><br>[Nm]                                | T <sub>K max.</sub><br>[Nm] |  |  |  |
| 01   | 15 – 28           | 15 – 28                | 8 – 28            | 35                                                                                         | 70                               | 60                                 | 120                            | 75                                                     | 150                         |  |  |  |
| 0    | 19 – 35           | 19 – 38                | 10 – 38           | 95                                                                                         | 190                              | 160                                | 320                            | 200                                                    | 400                         |  |  |  |
| 1    | 20 – 45           | 20 – 45                | 12 – 45           | 190                                                                                        | 380                              | 325                                | 650                            | 405                                                    | 810                         |  |  |  |
| 2    | 28 – 50           | 28 – 50                | 14 – 55           | 265                                                                                        | 530                              | 450                                | 900                            | 560                                                    | 1120                        |  |  |  |
| 3    | 35 – 55           | 35 – 60                | 20 - 60           | 310                                                                                        | 620                              | 525                                | 1050                           | 655                                                    | 1310                        |  |  |  |

### Table 9

|      | Transmittable torques [Nm] on clamping hubs frictional locking (Type 4940 / Ø d <sub>3</sub> )<br>/ on shrink disk hubs frictional locking (Type 4941 / Ø d <sub>4</sub> ) – dependent on bore -<br>suitable for tolerance constellation F7/k6 for clamping hubs and H7/k6 for shrink disk hubs |       |                |                |                |                |                |                |                |                |                |                |                |        |                |       |                |                |                |      |                |      |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------|----------------|-------|----------------|----------------|----------------|------|----------------|------|
|      | Ø                                                                                                                                                                                                                                                                                               | 15    | ø              | 16             | ø              | 19             | Ø              | 20             | ø              | 22             | Ø 24 Ø 25      |                | 25             | 5 Ø 28 |                | Ø 30  |                | Ø 32           |                | Ø 35 |                |      |
| Size | d <sub>3</sub>                                                                                                                                                                                                                                                                                  | d4    | d <sub>3</sub> | $d_4$          | d <sub>3</sub> | $\mathbf{d}_4$ | d <sub>3</sub> | $d_4$          | d <sub>3</sub> | d4             | d <sub>3</sub> | d4             | d <sub>3</sub> | d4     | d <sub>3</sub> | $d_4$ | d <sub>3</sub> | d₄             | d <sub>3</sub> | d4   | d₃             | d4   |
| 01   | 34                                                                                                                                                                                                                                                                                              | 56    | 36             | 62             | 43             | 81             | 45             | 87             | 50             | 100            | 54             | 120            | 57             | 125    | 63             | 135   | ; -            | -              | -              | -    | -              | -    |
| 0    | -                                                                                                                                                                                                                                                                                               | -     | -              | -              | 79             | 141            | 83             | 153            | 91             | 177            | 100            | 203            | 104            | 216    | 116            | 256   | 124            | 282            | 133            | 308  | 145            | 343  |
| 1    | -                                                                                                                                                                                                                                                                                               | -     | -              | -              | -              | -              | 83             | 197            | 91             | 228            | 100            | 261            | 104            | 279    | 116            | 332   | 124            | 368            | 133            | 405  | 145            | 460  |
| 2    | -                                                                                                                                                                                                                                                                                               | -     | -              | -              | -              | -              | -              | -              | -              | -              | -              | -              | -              | -      | 208            | 300   | 228            | 350            | 248            | 400  | 280            | 500  |
| 3    | -                                                                                                                                                                                                                                                                                               | -     | -              | -              | -              | -              | -              | -              | -              | -              | -              | -              | -              | -      | -              | -     | -              | -              | -              | -    | 350            | 450  |
|      | Ø                                                                                                                                                                                                                                                                                               | 38    | Ø              | 40             |                | Ø 42           | 2              | Ø              | 15 Ø           |                | 48             | Ø              | ý 50           |        | Ø 52           |       | Ø              | 55             | Ø              | 58   | Ø              | 60   |
| Size | d <sub>3</sub>                                                                                                                                                                                                                                                                                  | $d_4$ | d <sub>3</sub> | d <sub>4</sub> | d              | 3              | d <sub>4</sub> | d <sub>3</sub> | $d_4$          | d <sub>3</sub> | d <sub>4</sub> | d <sub>3</sub> | d <sub>4</sub> | d      | 3              | d4    | d <sub>3</sub> | d <sub>4</sub> | d <sub>3</sub> | d4   | d <sub>3</sub> | d4   |
| 01   | -                                                                                                                                                                                                                                                                                               | -     | -              | -              | -              |                | -              | -              | -              | -              | -              | -              | -              | -      |                | -     | -              | -              | -              | -    | -              | -    |
| 0    | -                                                                                                                                                                                                                                                                                               | 373   | -              | -              | -              |                | -              | -              | -              | -              | -              | -              | -              | -      |                | -     | -              | -              | -              | -    | -              | -    |
| 1    | 158                                                                                                                                                                                                                                                                                             | 513   | 166            | 547            | 17             | 4              | 577            | 187            | 617            | -              | -              | -              | -              | -      |                | -     | -              | -              | -              | -    | -              | -    |
| 2    | 315                                                                                                                                                                                                                                                                                             | 600   | 340            | 680            | 36             | 5              | 730            | 404            | 790            | 442            | 850            | 470            | 880            | ) -    | -              | -     | -              | -              | -              | -    | -              | -    |
| 3    | 390                                                                                                                                                                                                                                                                                             | 500   | 420            | 600            | 45             | 5              | 720            | 505            | 850            | 560            | 1000           | 600            | 118            | 0 64   | 10 12          | 270   | 705            | 1353           | -              | 1428 | -              | 1471 |

#### Table 10

|      | Axial ΔK a | Shaft misa      | lignments<br>Radial ΔK | flexible c      | oupling Ty<br>A | /pe 494.<br>.ngular ΔK | Św             | Dimonsion               | Locking s<br>for hub (Ite | set screw (26)<br>em 23.3 / Fig. 1) |
|------|------------|-----------------|------------------------|-----------------|-----------------|------------------------|----------------|-------------------------|---------------------------|-------------------------------------|
| Size | [mm]       | 92 Sh A<br>[mm] | 98 Sh A<br>[mm]        | 64 Sh D<br>[mm] | 92 Sh A<br>[°]  | 98 Sh A<br>[°]         | 64 Sh D<br>[°] | "E"<br>(Fig. 6)<br>[mm] | Thread                    | Tightening<br>torque<br>[Nm]        |
| 01   | 1,4        | 0,14            | 0,10                   | 0,07            | 1,0             | 0,9                    | 0,8            | 18                      | M5                        | 2                                   |
| 0    | 1,5        | 0,15            | 0,11                   | 0,08            | 1,0             | 0,9                    | 0,8            | 20                      | M6                        | 4,1                                 |
| 1    | 1,8        | 0,17            | 0,12                   | 0,09            | 1,0             | 0,9                    | 0,8            | 24                      | M8                        | 8,5                                 |
| 2    | 2,0        | 0,19            | 0,14                   | 0,1             | 1,0             | 0,9                    | 0,8            | 26                      | M8                        | 8,5                                 |
| 3    | 2,1        | 0,21            | 0,16                   | 0,11            | 1,0             | 0,9                    | 0,8            | 28                      | M8                        | 8,5                                 |

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten, Germany Tel.: +49 8341 804-0, Fax: +49 8341 804-421 www.mayr.com, E-Mail: info@mayr.com

![](_page_6_Picture_11.jpeg)

(B.4.14.EN)

Technical Data Type 496.\_\_\_.0

## Table 11

|      | E                                                | Bore torsionally rigid | Nominal torque Τ <sub>κι</sub><br>for torsionally rigid bac | and peak torque T <sub>ks</sub><br>klash-free shaft coupling |                         |  |  |
|------|--------------------------------------------------|------------------------|-------------------------------------------------------------|--------------------------------------------------------------|-------------------------|--|--|
|      | Shrink disk hub Key hub Clamping hub with keyway |                        |                                                             | Туре 4960                                                    |                         |  |  |
| Size | Type 49610<br>[mm]                               | Type 49620<br>[mm]     | Type 49620<br>[mm]                                          | Т <sub>кN</sub><br>[Nm]                                      | Т <sub>кs</sub><br>[Nm] |  |  |
| 01   | 19 – 38                                          | -                      | 19 – 35                                                     | 100                                                          | 150                     |  |  |
| 0    | 25 – 45                                          | -                      | 25 – 42                                                     | 150                                                          | 225                     |  |  |
| 1    | 25 – 45                                          | 16 – 32                | _                                                           | 300                                                          | 450                     |  |  |
| 2    | 40 - 60                                          | 25 – 50                | _                                                           | 650                                                          | 975                     |  |  |
| 3    | 45 – 70                                          | 30 – 55                | -                                                           | 1100                                                         | 1650                    |  |  |

## Table 12

|      |      | Transmittable torques [Nm] on shrink disk hubs frictional locking (Type 49610)<br>- dependent on bore - suitable for tolerance constellation H7/g6 |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |      |
|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Size | Ø 19 | Ø 20                                                                                                                                               | Ø 22 | Ø 24 | Ø 25 | Ø 28 | Ø 30 | Ø 32 | Ø 35 | Ø 38 | Ø 40 | Ø 42 | Ø 45 | Ø 48 | Ø 50 | Ø 52 | Ø 55 | Ø 60 | Ø 65 | Ø 70 |
| 01   | 150  | 150                                                                                                                                                | 150  | 150  | 150  | 150  | 150  | 150  | 150  | 150  | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    |
| 0    | -    | -                                                                                                                                                  | -    | -    | 225  | 225  | 225  | 225  | 225  | 225  | 225  | 225  | 225  | -    | -    | -    | -    | -    | -    | -    |
| 1    | -    | -                                                                                                                                                  | -    | -    | 339  | 404  | 448  | 492  | 558  | 620  | 659  | 694  | 738  | -    | -    | -    | -    | -    | -    | -    |
| 2    | -    | -                                                                                                                                                  | -    | -    | -    | -    | -    | -    | -    | -    | 873  | 937  | 1036 | 1132 | 1195 | 1255 | 1338 | 1454 | -    | -    |
| 3    | -    | -                                                                                                                                                  | -    | -    | -    | -    | -    | -    | -    | -    | -    | -    | 1268 | 1394 | 1480 | 1565 | 1691 | 1890 | 2065 | 2204 |

### Table 13

|      | Max. pe<br>for torsional                    | rmitted shaft misalio<br>ly rigid coupling Typ | gnments<br>be 4960             | Locking set screw (37.1)<br>for hub (Item 37 / Fig. 1) |                           |  |
|------|---------------------------------------------|------------------------------------------------|--------------------------------|--------------------------------------------------------|---------------------------|--|
| Size | Axial ΔK <sub>a</sub> <sup>5)</sup><br>[mm] | Radial ΔK ,<br>[mm]                            | Angular ΔK <sub>w</sub><br>[°] | Thread                                                 | Tightening torque<br>[Nm] |  |
| 01   | 0,9                                         | 0,2                                            | 2,0                            | -                                                      | -                         |  |
| 0    | 1,1                                         | 0,2                                            | 2,0                            | -                                                      | -                         |  |
| 1    | 0,8                                         | 0,2                                            | 1,4                            | M5 ( $Ød_p \le 22$ ) - M6 ( $Ød_p > 22$ )              | 2 / 4,1                   |  |
| 2    | 1,1                                         | 0,25                                           | 1,4                            | M6                                                     | 4,1                       |  |
| 3    | 1,3                                         | 0,3                                            | 1,4                            | M8                                                     | 8,5                       |  |

<sup>5)</sup> Only permitted as a static or virtually static value.

#### Design

The EAS  $\ensuremath{^{\!@}}$  -Compact  $\ensuremath{^{\!@}}$  clutch is designed as a mechanical overload clutch according to the ball-detent principle.

## Scope of Delivery / State of Delivery

- □ The clutch is manufacturer-assembled ready for installation.
- The torque is set manufacturer-side according to the customer's request (please compare the torque stipulated in the order with the torque imprinted/engraved in the identification).

Unless the customer requests a particular torque setting when ordering, the clutch will be pre-set to approx. 70 % of the maximum torque.

The hexagon head screw (10) is not secured with Loctite on a pre-set clutch. Before initial operation of the clutch, please secure the hexagon head screw (10) with Loctite 243.

Please check the scope of delivery according to the Parts List as well as the state of delivery immediately after receiving the goods.

*mayr*<sup>®</sup> will take no responsibility for belated complaints. Please report transport damage immediately to the deliverer. Please report incomplete delivery and obvious defects immediately to the manufacturer.

#### Function

The clutch protects the drive line from excessively high, unpermitted torque impacts which can occur due to unintentional blockages.

#### Function in normal operation

The EAS<sup>®</sup>-Compact<sup>®</sup> clutch transfers the torque from a drive shaft onto an output element which can be mounted onto the clutch ball bearing-supported pressure flange (2).

The torque transmission takes place backlash-free for the entire lifetime of the clutch.

The clutch Types 493., 494. und 496. connect two shafts and compensate for shaft misalignment.

#### Function in case of overload

If the set limit torque is exceeded (overload), the clutch disengages, the thrust washer (3) carries out an axial hub movement, a customer-side mounted limit switch (12) senses this stroke movement and emits a signal to switch off the drive. The residual torque is approx. 5 to max. 15 % of the set torque. This means that the EAS<sup>®</sup>-Compact<sup>®</sup> clutch is not load holding. Once the overload is removed, the clutch becomes automatically ready for operation again on reaching an engagement position.

#### Re-engagement:

The ratchetting division on the EAS<sup>®</sup>-Compact<sup>®</sup> ratchetting clutch **Type 49\_.\_\_0.** is **15**°

The ratchetting division on the EAS®-Compact® synchronous clutch **Type 49\_\_\_5.** is **360**°

![](_page_8_Picture_24.jpeg)

#### **Output Elements Installation**

The output element is centred on a deep groove ball bearing (6) (tolerance H7/h5) and bolted together with the pressure flange (2).

![](_page_9_Picture_4.jpeg)

Please observe the maximum permitted screwin depth in the pressure flange (2) as well as the connection dimensions "a" and "e" for the output elements, see Figs. 3

or 4 and Table 14.

If the resulting radial force from the output element is anywhere near the centre of the ball bearing (6) and under the max. permitted radial load acc. Table 4, an additional bearing for the output element is not necessary.

#### No appreciable axial forces (see Table 4) should be transferred from the output element onto the clutch pressure flange (2). The EAS<sup>®</sup>-Compact<sup>®</sup> with a long protruding hub

The EAS<sup>®</sup>-Compact<sup>®</sup> with a long protruding hub (Type 490.\_ \_\_1 / Fig. 2) is recommended for extremely wide output elements, or for elements with small diameters. On very small diameters, the output element is screwed together with the clutch pressure flange (2) via a customer-side intermediate flange.

In case of increased radial forces, a 2-bearing design (Type 490.\_\_\_\_2 / Fig. 2) should be used.

#### Example:

![](_page_9_Figure_12.jpeg)

![](_page_9_Figure_13.jpeg)

![](_page_9_Figure_14.jpeg)

## Fig. 2

Ball bearings, needle bearings or bearing bushings are suitable as bearings for the output element, depending on the installation situation and the installation space.

Please ensure that the output element bearing is designed as a fixed bearing (Fig. 4).

#### Table 14

![](_page_9_Figure_19.jpeg)

![](_page_9_Figure_20.jpeg)

![](_page_9_Figure_21.jpeg)

Fig. 4

|      | Thread in the pressure flange (Fig. 3)<br>with required screw quality<br>and tightening torque for the customer-side | May screw-in denth [mm]         | Connection dime<br>(Fig. 4 | nsions [mm]<br>)      |
|------|----------------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------------|-----------------------|
| Size | screw connection                                                                                                     | in the pressure flange (Fig. 3) | a <sup>+0,1</sup>          | e <sup>H7</sup><br>h5 |
| 01   | 8 x M4 / 8.8 / 2,6 Nm                                                                                                | 6                               | 5                          | 47                    |
| 0    | 8 x M5 / 8.8 / 5,1 Nm                                                                                                | 7                               | 7                          | 62                    |
| 1    | 8 x M6 / 8.8 / 9 Nm                                                                                                  | 9                               | 9                          | 75                    |
| 2    | 8 x M6 / 12.9 / 16 Nm                                                                                                | 10                              | 10                         | 90                    |
| 3    | 8 x M8 / 12.9 / 40 Nm                                                                                                | 12                              | 10                         | 100                   |

![](_page_9_Picture_26.jpeg)

#### Installation and Operational Instructions for EAS®-Compact® Type 49\_.\_ \_0.\_ Sizes 01 to 3 Ratchetting clutch, Synchronous clutch, Type 49 . 5. Sizes 01 to 3

## Cup Spring Layering (Fig. 5)

Correct cup spring layering is a prerequisite for problem-free clutch function and torque adjustment.

For the lower torque range, one cup spring (Type 49\_.5\_ \_.\_),

for the medium torque range, **two** cup springs (Type 49\_.6\_ \_.\_),

for the high torque range, four cup springs

(Type 49\_.7\_ \_.\_)

and for the maximum torque range five cup springs (Type 49\_.8\_5.) are installed.

#### 1x layered

![](_page_10_Figure_9.jpeg)

![](_page_10_Figure_10.jpeg)

5x layered

Type 49\_.8\_ 5.\_

Type 49\_.5\_\_.\_

![](_page_10_Figure_12.jpeg)

Type 49\_.7\_ \_.\_

![](_page_10_Figure_14.jpeg)

## Mounting onto the Shaft

EAS®-Compact® clutches include cone bushings, shrink disks, clamping hubs or keyways as part of the standard delivery. During installation of cone bushings, shrink disks or clamping hubs, please observe the following:

- Recommended shaft tolerance for cone bushings: h6
- Recommended shaft tolerance for clamping hubs: h6
- Recommended shaft tolerance for shrink disk hubs: g6
- Shaft surface: finely turned or ground  $(Ra = 0.8 \,\mu m).$
- □ Shaft material: yield point at least 400 N/mm<sup>2</sup>, e.g. C45 +QT, 42CrMoS4 +QT.
- Degrease or remove conserving layers on the shafts and bores before installing the clutch. Greasy or oily bores or shafts do not transmit the torques defined in the catalogue.
- Mount the clutch or clutch hubs onto both shaft ends using a suitable device and bring it / them into the correct position.
- □ Tighten the tensioning screws (11) of the cone bushing (13) in 2 steps cross-wise and then in 3 to max. 6 tightening sequences evenly using a torque wrench to the torque stated in Table 5.
- Type 494.-:

Tighten the tensioning screws (24) in the shrink disks (23.1) stepwise (in 3 to max. 6 tightening sequences) and crosswise evenly using a torque wrench to the torque stated in Table 5.

Туре 496.-: 

Tighten the tensioning screws (36.2) in the shrink disks (36.1) using a torgue wrench evenly and one after the other in max. 6 sequences to the torque stated in Table 5.

□ The transmittable torques of the shaft-hub connection are dependent on the bore diameter and the quality of the drive shafts used. Please observe the respective transmission tables in the valid and applicable product catalogue.

![](_page_10_Picture_30.jpeg)

The clutch or clutch hub carries out an axial movement in the direction of the cone bushing (13) when tightening the cone bushing (13). Because of this effect, please ensure that on the EAS®-Compact® clutch with steel bellows

(Type 493. .0), first one cone bushing is completely tightened (e.g. Item 13), then the other (steel bellows) side (Item 17, page 3).

Please also ensure during installation of Type 493.\_\_ .0 that no axial pressure is placed on the steel bellows (can cause damage).

## **De-installation** of the Cone Bushings and Shrink Disks

In the cone bushings and the shrink disks, there are tapped extracting holes next to the tensioning screws.

- 1) Loosen all tensioning screws by several thread turns.
- Screw out the tensioning screws located next to the tapped 2) extracting holes and screw them into the tapped extracting holes up to their limits. Then tighten these screws until the tensioning connection

loosens.

![](_page_10_Picture_39.jpeg)

![](_page_10_Picture_42.jpeg)

### Shaft Installation via Key Connection

On the EAS®-Compact® with a keyway, the clutch must be axially fixed onto the shaft after mounting, e.g.

- □ with a press cover and a screw, screwed into the shaft threaded centre hole (for Types 490.\_2.\_ and 493.\_2..0)
- □ and/or a locking set screw (for Types 494.\_2.\_ and 496.\_2.\_0):
  - ➔ Locking set screw (26) for hub (23.3), see Fig. 1 on page 3 and table 10 on page 7,
  - ➔ Locking set screw (37.1) for hub (37), see Fig. 1 on page 3 and table 13 on page 8,

# Joining Both Clutch Hubs (Items 1 / 16) for Type 493.\_\_\_.0 (Fig. 1)

Í

When mounting the hubs (1 and 16), the joining force must not be transferred via the steel bellows => danger of bellows deformation.

# Joining Both Clutch Components (1/23) for Type 494.\_\_\_. (Figs. 1 and 6)

The flexible elastomeric element (22) is pre-tensioned between the metal claws by joining components 23.1/23.2/23.3 with component 21. To do this, an axial installation force is required. The force required can be reduced by lightly greasing the elastomeric element.

![](_page_11_Picture_12.jpeg)

Use PU-compatible lubricants (e. g. Mobilith SHC460)!

(B.4.14.EN)

No unpermittedly high axial pressure should be placed on the elastomeric element (22) in completely assembled condition. Keep to distance dimension "E" acc. Fig. 6 and Table 10!

# Joining Both Clutch Components for Type 496.\_\_\_.0 (Fig. 1)

Join the misalignment-flexible part and the overload clutch and screw together with cap screws (Item 30) to the tightening torque given in Table 5.

The cap screws (Item 30) must be protected using a screwsecuring product, e.g. Loctite 243.

![](_page_11_Picture_18.jpeg)

The clutch or clutch hub carries out an axial movement in the direction of the cone bushing (Item 13) when tightening the cone bushing (13).

Because of this effect, please ensure that on the EAS<sup>®</sup>-Compact<sup>®</sup> clutch with disk pack (Type 496.\_\_\_\_0), first the cone bushing (13) is completely tightened, then the other (disk pack) side.

![](_page_11_Figure_21.jpeg)

Fig. 6

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten, Germany Tel.: +49 8341 804-0, Fax: +49 8341 804-421 www.mayr.com, E-Mail: info@mayr.com

![](_page_11_Picture_25.jpeg)

### Permitted Shaft Misalignments

The EAS<sup>®</sup>-Compact<sup>®</sup> clutches Types 494.\_\_\_. (lastic backlash-free), 493.\_\_\_.0 (with steel bellows) and 496.\_\_\_.0 (torsionally rigid backlash-free) compensate for radial, axial and angular shaft misalignments (Fig. 7) without losing their backlash-free function. However, the Type-specific permitted shaft misalignments indicated in Tables 6, 10 and 13 must not simultaneously reach their maximum value. If more than one kind of misalignment takes place simultaneously, they influence each other. This means that the permitted misalignment values are dependent on one another, see Fig. 8. The sum total of the actual misalignments in percent of the maximum value must not exceed 100 %.

The permitted misalignment values given in Tables 6, 10 and 13 refer to clutch operation at nominal torque, an ambient temperature of +30 °C and an operating speed of 1500 rpm. If the clutch is operated in other or more extreme operating conditions, please observe the dimensioning guidelines stated in the individual shaft coupling catalogues or contact the manufacturer.

![](_page_12_Figure_5.jpeg)

![](_page_12_Figure_6.jpeg)

Radial misalignment Axial displacement Angular misalignment

#### Type 494.\_\_\_. (lastic backlash-free)

![](_page_12_Figure_9.jpeg)

Radial misalignment Axial displacement Angular misalignment

#### Type 496.\_\_\_.0 (torsionally rigid backlash-free)

![](_page_12_Figure_12.jpeg)

Radial misalignment Axial displacement Angular misalignment

### Fig. 7

#### Example (Size 3 / Type 493. \_ \_ \_.0):

Axial displacement occurrence  $\Delta K_a = 0,4$  mm equals 40 % of the permitted maximum value  $\Delta K_a = 1,0$  mm. Radial misalignment occurrence  $\Delta K_r = 0,09$  mm equals 30 % of

the permitted maximum value  $\Delta K_r = 0.3$  mm.

=> permitted angular misalignment Kw = 30 % of the maximum value  $\Delta K_w$  = 2,0° =>  $\Delta K_w$  = 0,6°

![](_page_12_Figure_19.jpeg)

## **Clutch Alignment**

Exact alignment of the clutch improves the running smoothness of the drive line substantially, reduces the load on the shaft bearings and increases the clutch service lifetime. We recommend alignment of the clutch using a dial gauge or special laser on drives operating at very high speeds.

![](_page_12_Picture_22.jpeg)

![](_page_12_Picture_24.jpeg)

| Installation and Operation | ational Instru | uctions | for EAS <sup>®</sup> -Compact <sup>®</sup> |
|----------------------------|----------------|---------|--------------------------------------------|
| Ratchetting clutch,        | Туре 49        | 0       | Sizes 01 to 3                              |
| Synchronous clutch,        | Туре 49        | _5      | Sizes 01 to 3                              |

(B.4.14.EN)

#### **Torque Adjustment**

In order to guarantee low-wear clutch operation, it is essential that the clutch torque is set to a sufficiently high service factor (overload torque to operating torque).

Our experience has shown that an **adjustment factor of 1,5 to 3** gives good results.

On very high load alternations, high accelerations and irregular operation, please set the adjustment factor higher.

The respective torque adjustment range is printed on the Type tag (14). Torque adjustment is carried out by turning the adjusting nut (5). The installed cup springs (9) are operated in the negative range of the characteristic curve (see Fig. 9); this means that a stronger pre-tensioning of the cup spring results in a decrease of the spring force.

The torque is set manufacturer-side according to the customer's request. If no particular torque adjustment is requested customer-side, the clutch will always be **pre-set** and **marked** (calibrated) to approx. 70 % of the maximum torque.

![](_page_13_Picture_8.jpeg)

Adjusting the adjusting nut (5) or distorting the cup spring (9) outside of the cup spring characteristic curve (see Fig. 9) stops the clutch functioning.

The inspection dimension "a" (see Table 3) can show deviations due to construction tolerances or to clutch wear. After de-installing the clutch

(e.g. due to cup spring replacement or changes to the cup spring layering), the clutch must be re-adjusted and calibrated using dimension "a" (see Table 3 and Figs. 11/12).

![](_page_13_Figure_12.jpeg)

![](_page_13_Figure_13.jpeg)

![](_page_13_Picture_16.jpeg)

## (B.4.14.EN)

#### The following applies to standard adjusting nut:

![](_page_14_Picture_3.jpeg)

Even if the customer does not intend to change the pre-set torque, the hexagon head screw (10) must still be screwed out customer-side, painted with Loctite 243 and screwed back in again.

It is possible to check the **"Spring operation in the operating range"** (Fig. 9) using the dimension "a" (distance from the adjusting nut (5) facing side to the thrust washer (3) facing side, as shown in Fig. 11).

Please see Table 3 for the respective values.

![](_page_14_Picture_7.jpeg)

Turning the adjusting nut (5) clockwise causes a reduction in torque.

Turning it anti-clockwise causes an increase in torque.

You should be facing the adjusting nut (5) as shown in Fig. 10.

#### Adjusting the torque for standard adjusting nut

a) Please convert the required torque using the formula below into percent of the maximum adjustment value (see Table 3).

| Required torque adjustment | - x 100 - Adjustment in % |  |
|----------------------------|---------------------------|--|
| max. adjustment value      | - x 100 = Adjustment in % |  |

- b) Loosen the hexagon head screw (10) in the adjusting nut (5).
- c) Turn the adjusting nut (5) using the engraved adjustment scale (Fig. 10) clockwise or anti-clockwise using a hook or a face wrench until the required torque is reached.
- d) The required torque results from the marking overlap (D) on the locking ring (4) and the percent value (C) on the adjusting nut (5), see Fig. 10.
- e) Paint the hexagon head screw (10) with Loctite 243 and screw it into the adjusting nut (5); the 4 notches (A) in the adjusting nut (5) and the notches (B) in the locking ring (4) must be in the same position (Fig. 9). Correct slightly if necessary.

![](_page_14_Figure_18.jpeg)

![](_page_14_Figure_19.jpeg)

![](_page_14_Figure_20.jpeg)

Fig. 11

![](_page_14_Picture_24.jpeg)

(B.4.14.EN)

# The following applies to adjusting nut with radial clamping (option):

It is possible to check the **"Spring operation in the operating range"** (Fig. 9/ page 14) using the dimension "a" (distance from the adjusting nut (5.1) facing side to the thrust washer (3) facing side, as shown in Fig. 12).

Please see Table 3 for the respective values (values in brackets).

![](_page_15_Picture_5.jpeg)

Turning the adjusting nut (5.1) clockwise causes a reduction in torque. Turning it anti-clockwise causes an increase in

torque. You should be facing the adjusting nut (5.1) as shown in Fig. 13.

#### Adjusting the torque for adjusting nut with radial clamping

a) Please convert the required torque using the formula below into percent of the maximum adjustment value (see Table 3).

| Required torque adjustment | x 100 - Adjustment in %      |
|----------------------------|------------------------------|
| max. adjustment value      | -x 100 = Aujustitient in $%$ |

- b) Loosen the cap screw (10.1) in the adjusting nut (5.1).
- c) Turn the adjusting nut (5.1) using the adjustment scale (10) engraved on the outer diameter clockwise or anti-clockwise using a hook wrench until the required torque is reached.
- d) The required torque results from the marking overlap on the locking ring (4) and the percent value on the adjusting nut (5.1).
- e) Paint the cap screw (10.1) with Loctite 243 and screw it into the adjusting nut (5.1) as protection against twisting using the tightening torque according to Table 15.

#### Table 15

| Size | Tightening torque Item 10.1 |
|------|-----------------------------|
| 01   | 2,8 Nm                      |
| 0    | 5,5 Nm                      |
| 1    | 9,5 Nm                      |
| 2    | 9,5 Nm                      |
| 3    | 23 Nm                       |

![](_page_15_Figure_17.jpeg)

![](_page_15_Figure_18.jpeg)

![](_page_15_Figure_19.jpeg)

Fig. 13

![](_page_15_Picture_21.jpeg)

The switching direction arrow on the housing lid of the mechanical limit switch faces in the direction of the adjusting nut (5) or in the thrust washer (3) stroke direction, Fig. 1. Adjust the switch distances for the contactless and mechanical limit switch acc. Fig. 14 or Fig. 15. The distance from the switching point to the thrust washer (3) can be finely adjusted using a hexagon head screw SW7 (Figs. 14 and 15).

![](_page_16_Figure_3.jpeg)

### Fig. 14: contactless limit switch

![](_page_16_Figure_5.jpeg)

Fig. 15: mechanical limit switch

#### Maintenance and Maintenance Intervals

Maintenance work, which should be carried out after approx. 2000 operating hours, after 100 disengagements or at the latest after 1 year, includes:

(B.4.14.EN)

- ➔ Visual inspection
- → Functional inspection
- ➔ Inspection of the shaft-hub connection
- Inspection of the screw tightening torques The specified tightening torques (Table 5) must be maintained.
- Inspection of the set torque
- → Clutch release inspection
- ➔ Bearing or bearing pre-tension inspection
- ➔ Re-greasing of the transmission geometries, balls, recesses and sealing elements.

Clutch re-greasing must only be carried out by specially trained personnel.

For greasing, please use NLGI Class 1,5 grease with a basic oil viscosity of 460 mm<sup>2</sup>/s at 40 °C, e.g. Mobilith SHC460. When re-installing the clutch, please secure all screws with Loctite 243 (medium hard).

If large amounts of dirt or dust are present or in extreme ambient conditions, it may well be necessary to carry out inspections at shorter intervals.

We recommend that maintenance work is carried out at the site of manufacture.

#### Disposal

Electronic components (Limit switch):

Products which have not been disassembled can be disposed of under Code No. 160214 (mixed materials) or components under Code No. 160216, or can be disposed of by a certified disposal firm.

#### Steel components:

Steel scrap (Code No. 160117)

All aluminium components: Non-ferrous metals (Code No. 160118)

Seals, O-rings, V-seals, elastomers:

Plastic (Code No. 160119)

![](_page_16_Picture_31.jpeg)

## Malfunctions / Breakdowns Type 490.\_\_.

| Malfunction                               | Possible Causes                    | Solutions                                                                                                                            |
|-------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Premature                                 | Incorrect torque adjustment        | <ol> <li>Set the system out of operation</li> <li>Check the torgue adjustment</li> </ol>                                             |
| clutch<br>release                         | Adjusting nut has changed position | <ul><li>3) Secure the adjusting nut</li><li>4) If the cause of malfunction cannot be found, the clutch must be</li></ul>             |
|                                           | Worn clutch                        | inspected at the place of manufacture                                                                                                |
|                                           | Incorrect torque adjustment        | <ol> <li>Set the system out of operation</li> <li>Check whether foreign bodies influence the disengagement</li> </ol>                |
| Clutch does not<br>release<br>on overload | Adjusting nut has changed position | <ul> <li>3) Check the torque adjustment</li> <li>4) Secure the adjusting put</li> </ul>                                              |
|                                           | Worn clutch                        | <ul><li>5) If the cause of malfunction cannot be found, the clutch must be inspected at the place of manufacture</li></ul>           |
|                                           | Insufficient clutch securement     | <ol> <li>Set the system out of operation</li> <li>Check the clutch securement</li> </ol>                                             |
| Running noises in normal operation        | Loosened screws                    | <ol> <li>Check the screw tightening torques</li> <li>Check the torque adjustment and that the adjusting nut sits securely</li> </ol> |
|                                           | Loosened adjusting nut             | 5) If the cause of malfunction cannot be found, the clutch must be inspected at the place of manufacture                             |

## Malfunctions / Breakdowns Type 493.\_\_\_.0

| Malfunction                                                        | Possible Causes                                                                   | Solutions                                                                                                                                                                                                            |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    | Incorrect alignment                                                               | <ol> <li>Set the system out of operation</li> <li>Replace the entire clutch</li> <li>Check the alignment</li> </ol>                                                                                                  |
|                                                                    | Steel bellows have already been<br>damaged in transport or during<br>installation | <ol> <li>Set the system out of operation</li> <li>Replace the entire clutch</li> <li>Check the alignment</li> </ol>                                                                                                  |
| Steel bellows<br>breakage                                          | Operating parameters are not appropriate for the clutch performance               | <ol> <li>Set the system out of operation</li> <li>Check the operating parameters and select a suitable clutch<br/>(observe installation space)</li> <li>Install a new clutch</li> <li>Check the alignment</li> </ol> |
|                                                                    | Steel bellows is energised in natural frequency; resonance                        | <ol> <li>Set the system out of operation</li> <li>Re-align the line characteristics</li> <li>Replace the entire clutch</li> <li>Check the alignment</li> </ol>                                                       |
| Changes in running<br>noise<br>and / or<br>vibration<br>occurrence | Loosened screws,<br>resonances, insufficient clutch<br>securement                 | <ol> <li>Set the system out of operation</li> <li>Check the screw tightening torques</li> <li>Check the line characteristics</li> <li>Check the clutch parts and replace if damaged</li> </ol>                       |

![](_page_17_Picture_8.jpeg)

## Malfunctions / Breakdowns Type 494.\_\_.

| Malfunction                                                        | Possible Causes                                                                                                      | Solutions                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    | Incorrect alignment                                                                                                  | <ol> <li>Set the system out of operation</li> <li>Find / resolve the cause of incorrect alignment         <ul> <li>(e. g. loose foundation screws, motor securement breakage, heat expansion of system components, changes in the coupling distance dimension "E")</li> </ul> </li> <li>Check the clutch for wear</li> </ol>                                     |
| Changes in running<br>noise<br>and / or<br>vibration<br>occurrence | Wear on the elastomeric element,<br>temporary torque transmission due to<br>metal contact                            | <ol> <li>Set the system out of operation</li> <li>Dismantle the clutch and remove the remainders of the elastomeric element</li> <li>Check the clutch parts and replace if damaged</li> <li>Insert a new elastomeric element, install clutch components</li> <li>Check the alignment and correct if necessary.</li> </ol>                                        |
|                                                                    | Tensioning and clamping screws or<br>locking set screw for axial hub<br>securement or<br>connection screws are loose | <ol> <li>Set the system out of operation</li> <li>Check the clutch alignment</li> <li>Tighten the tensioning and clamping screws for axial hub<br/>securement and the connection screws to the required torque or<br/>tighten the locking set screw and secure it against self-loosening<br/>using sealing lacquer</li> <li>Check the clutch for wear</li> </ol> |
|                                                                    | Wear on the elastomeric element,<br>torque transmission due to metal<br>contact                                      | <ol> <li>Set the system out of operation</li> <li>Replace the entire clutch</li> <li>Check the alignment</li> </ol>                                                                                                                                                                                                                                              |
|                                                                    | Cam breakage due to high impact<br>energy / overload / excessively high<br>shaft misalignments                       | <ol> <li>Set the system out of operation</li> <li>Replace the entire clutch</li> <li>Check the alignment</li> <li>Find the cause of overload</li> </ol>                                                                                                                                                                                                          |
| Cam breakage                                                       | Operating parameters are not appropriate for the clutch performance                                                  | <ol> <li>Set the system out of operation</li> <li>Check the operating parameters and select a suitable clutch<br/>(observe installation space)</li> <li>Install a new clutch</li> <li>Check the alignment</li> </ol>                                                                                                                                             |
|                                                                    | Operational mistakes due to clutch characteristic data being exceeded                                                | <ol> <li>Set the system out of operation</li> <li>Check clutch dimensioning</li> <li>Replace the entire clutch</li> <li>Check the alignment</li> <li>Train and advise operating personnel</li> </ol>                                                                                                                                                             |
| Premature wear on<br>the elastomeric<br>element                    | Incorrect alignment                                                                                                  | <ol> <li>Set the system out of operation</li> <li>Find / resolve the cause of incorrect alignment<br/>(e. g. loose foundation screws, motor securement breakage, heat<br/>expansion of system components, changes in the coupling<br/>distance dimension "E")</li> <li>Check the clutch for wear</li> <li>Insert a new elastomeric element</li> </ol>            |

Page 19 of 21

![](_page_18_Picture_6.jpeg)

# Malfunctions / Breakdowns Type 494.\_\_\_. (continued)

| Malfunction                                                                                                             | Possible Causes                                                                                                                                                                                                                                                                    | Solutions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Premature wear on<br>the elastomeric<br>element                                                                         | e.g. contact with<br>aggressive liquids / oils, ozone<br>influences, excessively high ambient<br>temperature etc.,<br>which lead to physical changes in the<br>elastomeric element<br>The ambient or contact temperatures<br>permitted for the elastomeric element<br>are exceeded | <ol> <li>Set the system out of operation</li> <li>Dismantle the clutch and remove the remainders of the elastomeric element</li> <li>Check the clutch parts and replace if damaged</li> <li>Insert a new elastomeric element, install clutch components</li> <li>Check the alignment and correct if necessary.</li> <li>Make sure that further physical changes to the elastomeric element can be ruled out</li> <li>Set the system out of operation</li> <li>Dismantle the clutch parts and remove the remainders of the elastomeric element</li> <li>Check the clutch parts and replace if damaged</li> <li>Insert a new elastomeric element, install clutch components</li> <li>Check the clutch parts and replace if damaged</li> <li>Insert a new elastomeric element, install clutch components</li> <li>Check the alignment and correct if necessary.</li> <li>Check the alignment and correct if necessary.</li> <li>Check the alignment and correct if necessary.</li> </ol> |  |  |
| Premature<br>wear on the<br>elastomeric element<br>(material liquidation<br>inside the elastomeric<br>element toothing) | Drive vibrations                                                                                                                                                                                                                                                                   | <ol> <li>Set the system out of operation</li> <li>Dismantle the clutch and remove the remainders of the elastomeric element</li> <li>Check the clutch parts and replace if damaged</li> <li>Insert a new elastomeric element, install clutch components</li> <li>Check the alignment and correct if necessary.</li> <li>Find the cause of vibration (if necessary, use an elastomeric element with a lower or higher shore hardness)</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |

![](_page_19_Picture_6.jpeg)

## (B.4.14.EN)

#### Malfunctions / Breakdowns Type 496.\_\_\_.0

| Malfunction                                                        | Possible Causes                                                                                   | Solutions                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Changes<br>in running noise and /<br>or<br>vibration<br>occurrence | Incorrect alignment, incorrect<br>installation                                                    | <ol> <li>Set the system out of operation</li> <li>Find / resolve the cause of incorrect alignment</li> <li>Check the clutch for wear</li> </ol>                                                                                                                                                                                        |
|                                                                    | Loose connecting screws,<br>minor fretting corrosion under the<br>screw head and on the disk pack | <ol> <li>Set the system out of operation</li> <li>Check the clutch parts and replace if damaged</li> <li>Tighten the connecting screws to the specified torque</li> <li>Check the alignment and correct if necessary</li> </ol>                                                                                                        |
|                                                                    | Tensioning screws or locking set<br>screw for axial securement of the<br>hubs are loose           | <ol> <li>Set the system out of operation</li> <li>Check the clutch alignment</li> <li>Tighten the tensioning and clamping screws for axial hub<br/>securement to the required torque or tighten the<br/>locking set screw and secure it against self-loosening using sealing<br/>lacquer</li> <li>Check the clutch for wear</li> </ol> |
| Disk pack breakage                                                 | Disk pack breakage due to high<br>load impacts /<br>overload                                      | <ol> <li>Set the system out of operation</li> <li>Dismantle the clutch and remove the remainders of the disk packs</li> <li>Check the clutch parts and replace if damaged</li> <li>Find the cause of overload and remove it</li> </ol>                                                                                                 |
|                                                                    | Operating parameters are not<br>appropriate for the clutch<br>performance                         | <ol> <li>Set the system out of operation</li> <li>Check the operating parameters and select a suitable clutch<br/>(observe installation space)</li> <li>Install a new clutch</li> <li>Check the alignment</li> </ol>                                                                                                                   |
|                                                                    | Incorrect operation of the system<br>unit                                                         | <ol> <li>Set the system out of operation</li> <li>Dismantle the clutch and remove the remainders of the disk packs</li> <li>Check the clutch parts and replace if damaged</li> <li>Train and advise operating personnel</li> </ol>                                                                                                     |
| Disk packs / connecting<br>screws cracks<br>or breakage            | Drive vibrations                                                                                  | <ol> <li>Set the system out of operation</li> <li>Dismantle the clutch and remove the remainders of the disk packs</li> <li>Check the clutch parts and replace if damaged</li> <li>Check the alignment and correct if necessary</li> <li>Find the cause of vibration and remove it</li> </ol>                                          |

![](_page_20_Picture_4.jpeg)

#### Please Observe!

 $mayr^{\text{@}}$  will take no responsibility or guarantee for replacement parts and accessories which have not been delivered by  $mayr^{\text{@}}$ , or for damage resulting from the use of these products.

![](_page_20_Picture_9.jpeg)